[6588] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[7270] | 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[6588] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Data;
|
---|
| 26 | using HeuristicLab.Optimization;
|
---|
| 27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 28 |
|
---|
| 29 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
| 30 | [StorableClass]
|
---|
| 31 | public abstract class RegressionSolutionBase : DataAnalysisSolution, IRegressionSolution {
|
---|
| 32 | private const string TrainingMeanSquaredErrorResultName = "Mean squared error (training)";
|
---|
| 33 | private const string TestMeanSquaredErrorResultName = "Mean squared error (test)";
|
---|
[6643] | 34 | private const string TrainingMeanAbsoluteErrorResultName = "Mean absolute error (training)";
|
---|
| 35 | private const string TestMeanAbsoluteErrorResultName = "Mean absolute error (test)";
|
---|
[6588] | 36 | private const string TrainingSquaredCorrelationResultName = "Pearson's R² (training)";
|
---|
| 37 | private const string TestSquaredCorrelationResultName = "Pearson's R² (test)";
|
---|
| 38 | private const string TrainingRelativeErrorResultName = "Average relative error (training)";
|
---|
| 39 | private const string TestRelativeErrorResultName = "Average relative error (test)";
|
---|
| 40 | private const string TrainingNormalizedMeanSquaredErrorResultName = "Normalized mean squared error (training)";
|
---|
| 41 | private const string TestNormalizedMeanSquaredErrorResultName = "Normalized mean squared error (test)";
|
---|
| 42 |
|
---|
| 43 | public new IRegressionModel Model {
|
---|
| 44 | get { return (IRegressionModel)base.Model; }
|
---|
| 45 | protected set { base.Model = value; }
|
---|
| 46 | }
|
---|
| 47 |
|
---|
| 48 | public new IRegressionProblemData ProblemData {
|
---|
| 49 | get { return (IRegressionProblemData)base.ProblemData; }
|
---|
[6653] | 50 | set { base.ProblemData = value; }
|
---|
[6588] | 51 | }
|
---|
| 52 |
|
---|
| 53 | public abstract IEnumerable<double> EstimatedValues { get; }
|
---|
| 54 | public abstract IEnumerable<double> EstimatedTrainingValues { get; }
|
---|
| 55 | public abstract IEnumerable<double> EstimatedTestValues { get; }
|
---|
| 56 | public abstract IEnumerable<double> GetEstimatedValues(IEnumerable<int> rows);
|
---|
| 57 |
|
---|
| 58 | #region Results
|
---|
| 59 | public double TrainingMeanSquaredError {
|
---|
| 60 | get { return ((DoubleValue)this[TrainingMeanSquaredErrorResultName].Value).Value; }
|
---|
| 61 | private set { ((DoubleValue)this[TrainingMeanSquaredErrorResultName].Value).Value = value; }
|
---|
| 62 | }
|
---|
| 63 | public double TestMeanSquaredError {
|
---|
| 64 | get { return ((DoubleValue)this[TestMeanSquaredErrorResultName].Value).Value; }
|
---|
| 65 | private set { ((DoubleValue)this[TestMeanSquaredErrorResultName].Value).Value = value; }
|
---|
| 66 | }
|
---|
[6643] | 67 | public double TrainingMeanAbsoluteError {
|
---|
| 68 | get { return ((DoubleValue)this[TrainingMeanAbsoluteErrorResultName].Value).Value; }
|
---|
| 69 | private set { ((DoubleValue)this[TrainingMeanAbsoluteErrorResultName].Value).Value = value; }
|
---|
| 70 | }
|
---|
| 71 | public double TestMeanAbsoluteError {
|
---|
| 72 | get { return ((DoubleValue)this[TestMeanAbsoluteErrorResultName].Value).Value; }
|
---|
| 73 | private set { ((DoubleValue)this[TestMeanAbsoluteErrorResultName].Value).Value = value; }
|
---|
| 74 | }
|
---|
[6588] | 75 | public double TrainingRSquared {
|
---|
| 76 | get { return ((DoubleValue)this[TrainingSquaredCorrelationResultName].Value).Value; }
|
---|
| 77 | private set { ((DoubleValue)this[TrainingSquaredCorrelationResultName].Value).Value = value; }
|
---|
| 78 | }
|
---|
| 79 | public double TestRSquared {
|
---|
| 80 | get { return ((DoubleValue)this[TestSquaredCorrelationResultName].Value).Value; }
|
---|
| 81 | private set { ((DoubleValue)this[TestSquaredCorrelationResultName].Value).Value = value; }
|
---|
| 82 | }
|
---|
| 83 | public double TrainingRelativeError {
|
---|
| 84 | get { return ((DoubleValue)this[TrainingRelativeErrorResultName].Value).Value; }
|
---|
| 85 | private set { ((DoubleValue)this[TrainingRelativeErrorResultName].Value).Value = value; }
|
---|
| 86 | }
|
---|
| 87 | public double TestRelativeError {
|
---|
| 88 | get { return ((DoubleValue)this[TestRelativeErrorResultName].Value).Value; }
|
---|
| 89 | private set { ((DoubleValue)this[TestRelativeErrorResultName].Value).Value = value; }
|
---|
| 90 | }
|
---|
| 91 | public double TrainingNormalizedMeanSquaredError {
|
---|
| 92 | get { return ((DoubleValue)this[TrainingNormalizedMeanSquaredErrorResultName].Value).Value; }
|
---|
| 93 | private set { ((DoubleValue)this[TrainingNormalizedMeanSquaredErrorResultName].Value).Value = value; }
|
---|
| 94 | }
|
---|
| 95 | public double TestNormalizedMeanSquaredError {
|
---|
| 96 | get { return ((DoubleValue)this[TestNormalizedMeanSquaredErrorResultName].Value).Value; }
|
---|
| 97 | private set { ((DoubleValue)this[TestNormalizedMeanSquaredErrorResultName].Value).Value = value; }
|
---|
| 98 | }
|
---|
| 99 | #endregion
|
---|
| 100 |
|
---|
| 101 | [StorableConstructor]
|
---|
| 102 | protected RegressionSolutionBase(bool deserializing) : base(deserializing) { }
|
---|
| 103 | protected RegressionSolutionBase(RegressionSolutionBase original, Cloner cloner)
|
---|
| 104 | : base(original, cloner) {
|
---|
| 105 | }
|
---|
| 106 | protected RegressionSolutionBase(IRegressionModel model, IRegressionProblemData problemData)
|
---|
| 107 | : base(model, problemData) {
|
---|
| 108 | Add(new Result(TrainingMeanSquaredErrorResultName, "Mean of squared errors of the model on the training partition", new DoubleValue()));
|
---|
| 109 | Add(new Result(TestMeanSquaredErrorResultName, "Mean of squared errors of the model on the test partition", new DoubleValue()));
|
---|
[6643] | 110 | Add(new Result(TrainingMeanAbsoluteErrorResultName, "Mean of absolute errors of the model on the training partition", new DoubleValue()));
|
---|
| 111 | Add(new Result(TestMeanAbsoluteErrorResultName, "Mean of absolute errors of the model on the test partition", new DoubleValue()));
|
---|
[6588] | 112 | Add(new Result(TrainingSquaredCorrelationResultName, "Squared Pearson's correlation coefficient of the model output and the actual values on the training partition", new DoubleValue()));
|
---|
| 113 | Add(new Result(TestSquaredCorrelationResultName, "Squared Pearson's correlation coefficient of the model output and the actual values on the test partition", new DoubleValue()));
|
---|
| 114 | Add(new Result(TrainingRelativeErrorResultName, "Average of the relative errors of the model output and the actual values on the training partition", new PercentValue()));
|
---|
| 115 | Add(new Result(TestRelativeErrorResultName, "Average of the relative errors of the model output and the actual values on the test partition", new PercentValue()));
|
---|
| 116 | Add(new Result(TrainingNormalizedMeanSquaredErrorResultName, "Normalized mean of squared errors of the model on the training partition", new DoubleValue()));
|
---|
| 117 | Add(new Result(TestNormalizedMeanSquaredErrorResultName, "Normalized mean of squared errors of the model on the test partition", new DoubleValue()));
|
---|
| 118 | }
|
---|
| 119 |
|
---|
[6643] | 120 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 121 | private void AfterDeserialization() {
|
---|
| 122 | // BackwardsCompatibility3.4
|
---|
| 123 |
|
---|
| 124 | #region Backwards compatible code, remove with 3.5
|
---|
| 125 |
|
---|
| 126 | if (!ContainsKey(TrainingMeanAbsoluteErrorResultName)) {
|
---|
| 127 | OnlineCalculatorError errorState;
|
---|
| 128 | Add(new Result(TrainingMeanAbsoluteErrorResultName, "Mean of absolute errors of the model on the training partition", new DoubleValue()));
|
---|
[6740] | 129 | double trainingMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(EstimatedTrainingValues, ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes), out errorState);
|
---|
[6643] | 130 | TrainingMeanAbsoluteError = errorState == OnlineCalculatorError.None ? trainingMAE : double.NaN;
|
---|
| 131 | }
|
---|
| 132 |
|
---|
| 133 | if (!ContainsKey(TestMeanAbsoluteErrorResultName)) {
|
---|
| 134 | OnlineCalculatorError errorState;
|
---|
| 135 | Add(new Result(TestMeanAbsoluteErrorResultName, "Mean of absolute errors of the model on the test partition", new DoubleValue()));
|
---|
[6740] | 136 | double testMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(EstimatedTestValues, ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndizes), out errorState);
|
---|
[6643] | 137 | TestMeanAbsoluteError = errorState == OnlineCalculatorError.None ? testMAE : double.NaN;
|
---|
| 138 | }
|
---|
| 139 | #endregion
|
---|
| 140 | }
|
---|
| 141 |
|
---|
[6588] | 142 | protected void CalculateResults() {
|
---|
| 143 | double[] estimatedTrainingValues = EstimatedTrainingValues.ToArray(); // cache values
|
---|
[6740] | 144 | double[] originalTrainingValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes).ToArray();
|
---|
[6588] | 145 | double[] estimatedTestValues = EstimatedTestValues.ToArray(); // cache values
|
---|
[6740] | 146 | double[] originalTestValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndizes).ToArray();
|
---|
[6588] | 147 |
|
---|
| 148 | OnlineCalculatorError errorState;
|
---|
[6961] | 149 | double trainingMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
[6588] | 150 | TrainingMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingMSE : double.NaN;
|
---|
[6961] | 151 | double testMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
[6588] | 152 | TestMeanSquaredError = errorState == OnlineCalculatorError.None ? testMSE : double.NaN;
|
---|
| 153 |
|
---|
[6961] | 154 | double trainingMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
[6643] | 155 | TrainingMeanAbsoluteError = errorState == OnlineCalculatorError.None ? trainingMAE : double.NaN;
|
---|
[6961] | 156 | double testMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
[6643] | 157 | TestMeanAbsoluteError = errorState == OnlineCalculatorError.None ? testMAE : double.NaN;
|
---|
| 158 |
|
---|
[6961] | 159 | double trainingR2 = OnlinePearsonsRSquaredCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
[6588] | 160 | TrainingRSquared = errorState == OnlineCalculatorError.None ? trainingR2 : double.NaN;
|
---|
[6961] | 161 | double testR2 = OnlinePearsonsRSquaredCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
[6588] | 162 | TestRSquared = errorState == OnlineCalculatorError.None ? testR2 : double.NaN;
|
---|
| 163 |
|
---|
[6961] | 164 | double trainingRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
[6588] | 165 | TrainingRelativeError = errorState == OnlineCalculatorError.None ? trainingRelError : double.NaN;
|
---|
[6961] | 166 | double testRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
[6588] | 167 | TestRelativeError = errorState == OnlineCalculatorError.None ? testRelError : double.NaN;
|
---|
| 168 |
|
---|
[6961] | 169 | double trainingNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
[6588] | 170 | TrainingNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingNMSE : double.NaN;
|
---|
[6961] | 171 | double testNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
[6588] | 172 | TestNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? testNMSE : double.NaN;
|
---|
| 173 | }
|
---|
| 174 | }
|
---|
| 175 | }
|
---|