1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
29 | using HeuristicLab.Operators;
|
---|
30 | using HeuristicLab.Parameters;
|
---|
31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
34 | [StorableClass]
|
---|
35 | public class SymbolicDataAnalysisExpressionTreeSimilarityCalculator : SingleSuccessorOperator {
|
---|
36 | private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
|
---|
37 | private const string CurrentSymbolicExpressionTreeParameterName = "CurrentSymbolicExpressionTree";
|
---|
38 | private const string SimilarityValuesParmeterName = "Similarity";
|
---|
39 | // comparer parameters
|
---|
40 | private const string MatchVariablesParameterName = "MatchVariableNames";
|
---|
41 | private const string MatchVariableWeightsParameterName = "MatchVariableWeights";
|
---|
42 | private const string MatchConstantValuesParameterName = "MatchConstantValues";
|
---|
43 |
|
---|
44 | public IScopeTreeLookupParameter<ISymbolicExpressionTree> SymbolicExpressionTreeParameter {
|
---|
45 | get { return (IScopeTreeLookupParameter<ISymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
|
---|
46 | }
|
---|
47 | public IValueParameter<ISymbolicExpressionTree> CurrentSymbolicExpressionTreeParameter {
|
---|
48 | get { return (IValueParameter<ISymbolicExpressionTree>)Parameters[CurrentSymbolicExpressionTreeParameterName]; }
|
---|
49 | }
|
---|
50 | public ILookupParameter<BoolValue> MatchVariableNamesParameter {
|
---|
51 | get { return (ILookupParameter<BoolValue>)Parameters[MatchVariablesParameterName]; }
|
---|
52 | }
|
---|
53 | public ILookupParameter<BoolValue> MatchVariableWeightsParameter {
|
---|
54 | get { return (ILookupParameter<BoolValue>)Parameters[MatchVariableWeightsParameterName]; }
|
---|
55 | }
|
---|
56 | public ILookupParameter<BoolValue> MatchConstantValuesParameter {
|
---|
57 | get { return (ILookupParameter<BoolValue>)Parameters[MatchConstantValuesParameterName]; }
|
---|
58 | }
|
---|
59 | public ILookupParameter<DoubleValue> SimilarityParameter {
|
---|
60 | get { return (ILookupParameter<DoubleValue>)Parameters[SimilarityValuesParmeterName]; }
|
---|
61 | }
|
---|
62 |
|
---|
63 | public ISymbolicExpressionTree CurrentSymbolicExpressionTree {
|
---|
64 | get { return CurrentSymbolicExpressionTreeParameter.Value; }
|
---|
65 | set { CurrentSymbolicExpressionTreeParameter.Value = value; }
|
---|
66 | }
|
---|
67 |
|
---|
68 | public SymbolicExpressionTreeNodeSimilarityComparer SimilarityComparer { get; set; }
|
---|
69 |
|
---|
70 | public Dictionary<ISymbolicExpressionTree, SymbolicDataAnalysisExpressionTreeSimilarity.GeneticItem[]> GeneticItems;
|
---|
71 |
|
---|
72 | public int MaximumTreeDepth { get; set; }
|
---|
73 |
|
---|
74 | protected SymbolicDataAnalysisExpressionTreeSimilarityCalculator(SymbolicDataAnalysisExpressionTreeSimilarityCalculator original, Cloner cloner) : base(original, cloner) { }
|
---|
75 | public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicDataAnalysisExpressionTreeSimilarityCalculator(this, cloner); }
|
---|
76 | [StorableConstructor]
|
---|
77 | protected SymbolicDataAnalysisExpressionTreeSimilarityCalculator(bool deserializing) : base(deserializing) { }
|
---|
78 |
|
---|
79 | public SymbolicDataAnalysisExpressionTreeSimilarityCalculator()
|
---|
80 | : base() {
|
---|
81 | Parameters.Add(new ScopeTreeLookupParameter<ISymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic expression trees to analyze."));
|
---|
82 | Parameters.Add(new ValueParameter<ISymbolicExpressionTree>(CurrentSymbolicExpressionTreeParameterName, ""));
|
---|
83 | Parameters.Add(new LookupParameter<BoolValue>(MatchVariablesParameterName, "Specify if the symbolic expression tree comparer should match variable names."));
|
---|
84 | Parameters.Add(new LookupParameter<BoolValue>(MatchVariableWeightsParameterName, "Specify if the symbolic expression tree comparer should match variable weights."));
|
---|
85 | Parameters.Add(new LookupParameter<BoolValue>(MatchConstantValuesParameterName, "Specify if the symbolic expression tree comparer should match constant values."));
|
---|
86 | Parameters.Add(new LookupParameter<DoubleValue>(SimilarityValuesParmeterName, ""));
|
---|
87 | }
|
---|
88 |
|
---|
89 | public override IOperation Apply() {
|
---|
90 | var trees = SymbolicExpressionTreeParameter.ActualValue;
|
---|
91 |
|
---|
92 | double similarity = 0.0;
|
---|
93 | var current = CurrentSymbolicExpressionTree;
|
---|
94 |
|
---|
95 | bool found = false;
|
---|
96 | foreach (var tree in trees) {
|
---|
97 | if (tree == current) {
|
---|
98 | found = true;
|
---|
99 | continue;
|
---|
100 | }
|
---|
101 |
|
---|
102 | if (found) {
|
---|
103 | similarity += SymbolicDataAnalysisExpressionTreeSimilarity.MaxCommonSubtreeSimilarity(current, tree, SimilarityComparer);
|
---|
104 | // similarity += SymbolicDataAnalysisExpressionTreeSimilarity.GeneticItemSimilarity(GeneticItems[current], GeneticItems[tree], MaximumTreeDepth);
|
---|
105 | }
|
---|
106 | }
|
---|
107 |
|
---|
108 | lock (SimilarityParameter.ActualValue) {
|
---|
109 | SimilarityParameter.ActualValue.Value += similarity;
|
---|
110 | }
|
---|
111 | return base.Apply();
|
---|
112 | }
|
---|
113 | }
|
---|
114 |
|
---|
115 | public static class SymbolicDataAnalysisExpressionTreeSimilarity {
|
---|
116 | public static double CalculateSimilarity(ISymbolicExpressionTreeNode a, ISymbolicExpressionTreeNode b, SymbolicExpressionTreeNodeSimilarityComparer comp) {
|
---|
117 | return 2.0 * SymbolicExpressionTreeMatching.Match(a, b, comp) / (a.GetLength() + b.GetLength());
|
---|
118 | }
|
---|
119 |
|
---|
120 | public static double MaxCommonSubtreeSimilarity(ISymbolicExpressionTree a, ISymbolicExpressionTree b, SymbolicExpressionTreeNodeSimilarityComparer comparer) {
|
---|
121 | double max = 0;
|
---|
122 | var rootA = a.Root.GetSubtree(0).GetSubtree(0);
|
---|
123 | var rootB = b.Root.GetSubtree(0).GetSubtree(0);
|
---|
124 | foreach (var aa in rootA.IterateNodesBreadth()) {
|
---|
125 | int lenA = aa.GetLength();
|
---|
126 | if (lenA <= max) continue;
|
---|
127 | foreach (var bb in rootB.IterateNodesBreadth()) {
|
---|
128 | int lenB = bb.GetLength();
|
---|
129 | if (lenB <= max) continue;
|
---|
130 | int matches = SymbolicExpressionTreeMatching.Match(aa, bb, comparer);
|
---|
131 | if (max < matches) max = matches;
|
---|
132 | }
|
---|
133 | }
|
---|
134 | return 2.0 * max / (rootA.GetLength() + rootB.GetLength());
|
---|
135 | }
|
---|
136 |
|
---|
137 | public static double GeneticItemSimilarity(ISymbolicExpressionTree a, ISymbolicExpressionTree b, int maximumTreeHeight, bool preventMultipleContribution = true) {
|
---|
138 | const int minLevelDelta = 1;
|
---|
139 | const int maxLevelDelta = 4;
|
---|
140 |
|
---|
141 | var itemsA = a.GetGeneticItems(minLevelDelta, maxLevelDelta).ToArray();
|
---|
142 | var itemsB = b.GetGeneticItems(minLevelDelta, maxLevelDelta).ToArray();
|
---|
143 |
|
---|
144 | return GeneticItemSimilarity(itemsA, itemsB, maximumTreeHeight);
|
---|
145 | }
|
---|
146 |
|
---|
147 | public static double GeneticItemSimilarity(GeneticItem[] itemsA, GeneticItem[] itemsB, int maximumTreeHeight, bool preventMultipleContribution = true) {
|
---|
148 | double similarity = 0.0;
|
---|
149 | if (itemsA.Length == 0 || itemsB.Length == 0) return similarity;
|
---|
150 |
|
---|
151 | var flagsB = new bool[itemsB.Length];
|
---|
152 |
|
---|
153 | for (int i = 0; i != itemsA.Length; ++i) {
|
---|
154 | double simMax = 0.0;
|
---|
155 | int index = -1;
|
---|
156 | for (int j = 0; j != itemsB.Length; ++j) {
|
---|
157 | if (flagsB[j]) continue;
|
---|
158 | double sim = StructuralSimilarity(itemsA[i], itemsB[j], maximumTreeHeight);
|
---|
159 | if (sim > simMax) {
|
---|
160 | simMax = sim;
|
---|
161 | index = j;
|
---|
162 | }
|
---|
163 | if (preventMultipleContribution && index > -1) {
|
---|
164 | flagsB[index] = true;
|
---|
165 | }
|
---|
166 | }
|
---|
167 | similarity += simMax;
|
---|
168 | }
|
---|
169 | return similarity / itemsA.Length;
|
---|
170 | }
|
---|
171 |
|
---|
172 | public static double AdditiveSimilarity(ISymbolicExpressionTree a, ISymbolicExpressionTree b, SymbolicExpressionTreeNodeSimilarityComparer comparer) {
|
---|
173 | var nA = a.Root.GetSubtree(0).GetSubtree(0);
|
---|
174 | var nB = b.Root.GetSubtree(0).GetSubtree(0);
|
---|
175 |
|
---|
176 | var nodesA = nA.IterateNodesBreadth().ToArray();
|
---|
177 | var nodesB = nB.IterateNodesBreadth().ToArray();
|
---|
178 |
|
---|
179 | var similarities = nodesA.SelectMany(ia => nodesB, (ia, ib) => CalculateSimilarity(ia, ib, comparer)).Where(s => !s.IsAlmost(0.0)).ToList();
|
---|
180 |
|
---|
181 | double average = similarities.Count > 0 ? similarities.Average() : 0;
|
---|
182 | if (average > 1.0) throw new Exception("Similarity average should be less than 1.0");
|
---|
183 | if (average < 0.0) throw new Exception("Similarity average should be greater than 0.0");
|
---|
184 | return average;
|
---|
185 | }
|
---|
186 |
|
---|
187 | private static double StructuralSimilarity(GeneticItem g1, GeneticItem g2, int heightMax) {
|
---|
188 | if (!(SameType(g1.Ascendant, g2.Ascendant) && SameType(g1.Descendant, g2.Descendant))) return 0.0;
|
---|
189 |
|
---|
190 | double s1 = 1.0 - Math.Abs(g1.LevelDelta - g2.LevelDelta) / heightMax;
|
---|
191 | double s2 = g1.Index == g2.Index ? 1.0 : 0.0;
|
---|
192 | double s3 = g1.ParamA.Variant.Name.Equals(g2.ParamA.Variant.Name) ? 1.0 : 0.0;
|
---|
193 | double s4 = g1.ParamB.Variant.Name.Equals(g2.ParamB.Variant.Name) ? 1.0 : 0.0;
|
---|
194 |
|
---|
195 | double deltaCa = Math.Abs(g1.ParamA.Coeff - g2.ParamA.Coeff);
|
---|
196 | double deltaCb = Math.Abs(g1.ParamB.Coeff - g2.ParamB.Coeff);
|
---|
197 | double s5 = 0.0;
|
---|
198 | double s6 = 0.0;
|
---|
199 | // no time offsets so we hardcode s7 = s8 = 0.0
|
---|
200 | double s7 = 0.0;
|
---|
201 | double s8 = 0.0;
|
---|
202 | // variable indexes
|
---|
203 | double s9 = 0.0;
|
---|
204 | double s10 = 0.0;
|
---|
205 |
|
---|
206 | // same type with g2.Ascendant so we only do one check
|
---|
207 | if (g1.Ascendant is VariableTreeNode) {
|
---|
208 | s5 = deltaCa / (((Variable)g1.Ascendant.Symbol).WeightManipulatorSigma * 4);
|
---|
209 | s9 = g1.ParamA.VariableIndex.Equals(g2.ParamA.VariableIndex) ? 1.0 : 0.0;
|
---|
210 | }
|
---|
211 | if (g1.Descendant is VariableTreeNode) {
|
---|
212 | s6 = deltaCb / (((Variable)g1.Descendant.Symbol).WeightManipulatorSigma * 4);
|
---|
213 | s10 = g1.ParamB.VariableIndex.Equals(g2.ParamB.VariableIndex) ? 1.0 : 0.0;
|
---|
214 | }
|
---|
215 |
|
---|
216 | double similarity = 1.0;
|
---|
217 |
|
---|
218 | double[] constributors = new double[10] { s1, s2, s3, s4, s5, s6, s7, s8, s9, s10 }; // s1...s10
|
---|
219 | double[] coefficients = new double[10] { 0.8, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2 }; // c1...c10
|
---|
220 |
|
---|
221 | for (int i = 0; i != 10; ++i) {
|
---|
222 | similarity *= (1 - (1 - constributors[i]) * coefficients[i]);
|
---|
223 | }
|
---|
224 | return double.IsNaN(similarity) ? 0 : similarity;
|
---|
225 | }
|
---|
226 |
|
---|
227 | // genetic items for computing tree similarity (S. Winkler)
|
---|
228 | public class GeneticItem {
|
---|
229 | public ISymbolicExpressionTreeNode Ascendant;
|
---|
230 | public ISymbolicExpressionTreeNode Descendant;
|
---|
231 | public int LevelDelta;
|
---|
232 | public int Index;
|
---|
233 | public double[] Coefficients; // c_i = 0.2, i=1,...,10, d_1 = 0.8
|
---|
234 | // parameters for the Ascendant and Descendant
|
---|
235 | public GeneticItemParameters ParamA;
|
---|
236 | public GeneticItemParameters ParamB;
|
---|
237 | }
|
---|
238 |
|
---|
239 | public class GeneticItemParameters {
|
---|
240 | public Symbol Variant; // the variant of functions
|
---|
241 | public double Coeff; // the coefficient of terminals
|
---|
242 | public int TimeOffset; // the time offset of terminals
|
---|
243 | public int VariableIndex; // the variable index (of terminals)
|
---|
244 | }
|
---|
245 | // get genetic items
|
---|
246 | public static List<GeneticItem> GetGeneticItems(this ISymbolicExpressionTree tree, int minLevelDelta, int maxLevelDelta) {
|
---|
247 | return GetGeneticItems(tree.Root.GetSubtree(0).GetSubtree(0), minLevelDelta, maxLevelDelta).ToList();
|
---|
248 | }
|
---|
249 |
|
---|
250 | private static double Coefficient(this ISymbolicExpressionTreeNode node) {
|
---|
251 | var variable = node as VariableTreeNode;
|
---|
252 | if (variable != null)
|
---|
253 | return variable.Weight;
|
---|
254 | var constant = node as ConstantTreeNode;
|
---|
255 | if (constant != null)
|
---|
256 | return constant.Value;
|
---|
257 | return 0.0;
|
---|
258 | }
|
---|
259 |
|
---|
260 | private static int VariableIndex(this ISymbolicExpressionTreeNode node) {
|
---|
261 | var variable = node as VariableTreeNode;
|
---|
262 | if (variable != null)
|
---|
263 | return variable.Symbol.AllVariableNames.ToList().IndexOf(variable.VariableName);
|
---|
264 | return -1;
|
---|
265 | }
|
---|
266 |
|
---|
267 | private static IEnumerable<GeneticItem> GetGeneticItems(ISymbolicExpressionTreeNode node, int minimumLevelDelta, int maximumLevelDelta) {
|
---|
268 | var descendants = node.IterateNodesBreadth().Skip(1).ToArray();
|
---|
269 | for (int i = 0; i != descendants.Length; ++i) {
|
---|
270 | var descendant = descendants[i];
|
---|
271 | var levelDelta = node.GetBranchLevel(descendant);
|
---|
272 | if (!(minimumLevelDelta <= levelDelta && levelDelta <= maximumLevelDelta)) continue;
|
---|
273 | var p = descendant;
|
---|
274 | while (p.Parent != node && p.Parent != null)
|
---|
275 | p = p.Parent;
|
---|
276 | if (p.Parent == null) throw new Exception("The child is not a descendant of node");
|
---|
277 | var geneticItem = new GeneticItem {
|
---|
278 | Ascendant = node, Descendant = descendant, LevelDelta = levelDelta, Index = node.IndexOfSubtree(p),
|
---|
279 | ParamA = new GeneticItemParameters {
|
---|
280 | Coeff = node.Coefficient(), TimeOffset = 0, VariableIndex = node.VariableIndex(), Variant = (Symbol)node.Symbol
|
---|
281 | },
|
---|
282 | ParamB = new GeneticItemParameters {
|
---|
283 | Coeff = descendant.Coefficient(), TimeOffset = 0, VariableIndex = descendant.VariableIndex(), Variant = (Symbol)descendant.Symbol
|
---|
284 | }
|
---|
285 | };
|
---|
286 | yield return geneticItem;
|
---|
287 | }
|
---|
288 | }
|
---|
289 |
|
---|
290 | // returns true if both nodes are variables, or both are constants, or both are functions
|
---|
291 | private static bool SameType(ISymbolicExpressionTreeNode a, ISymbolicExpressionTreeNode b) {
|
---|
292 | if (a is VariableTreeNode) {
|
---|
293 | return b is VariableTreeNode;
|
---|
294 | }
|
---|
295 | if (a is ConstantTreeNode) {
|
---|
296 | return b is ConstantTreeNode;
|
---|
297 | }
|
---|
298 | return true;
|
---|
299 | }
|
---|
300 | }
|
---|
301 | }
|
---|