[9293] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
[9423] | 23 | using System.Collections.Generic;
|
---|
[9293] | 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 29 | using HeuristicLab.Operators;
|
---|
| 30 | using HeuristicLab.Parameters;
|
---|
| 31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 32 |
|
---|
| 33 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
| 34 | [StorableClass]
|
---|
| 35 | public class SymbolicDataAnalysisExpressionTreeSimilarityCalculator : SingleSuccessorOperator {
|
---|
| 36 | private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
|
---|
| 37 | private const string CurrentSymbolicExpressionTreeParameterName = "CurrentSymbolicExpressionTree";
|
---|
| 38 | private const string SimilarityValuesParmeterName = "Similarity";
|
---|
| 39 | // comparer parameters
|
---|
| 40 | private const string MatchVariablesParameterName = "MatchVariableNames";
|
---|
| 41 | private const string MatchVariableWeightsParameterName = "MatchVariableWeights";
|
---|
| 42 | private const string MatchConstantValuesParameterName = "MatchConstantValues";
|
---|
| 43 |
|
---|
| 44 | public IScopeTreeLookupParameter<ISymbolicExpressionTree> SymbolicExpressionTreeParameter {
|
---|
| 45 | get { return (IScopeTreeLookupParameter<ISymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
|
---|
| 46 | }
|
---|
| 47 | public IValueParameter<ISymbolicExpressionTree> CurrentSymbolicExpressionTreeParameter {
|
---|
| 48 | get { return (IValueParameter<ISymbolicExpressionTree>)Parameters[CurrentSymbolicExpressionTreeParameterName]; }
|
---|
| 49 | }
|
---|
| 50 | public ILookupParameter<BoolValue> MatchVariableNamesParameter {
|
---|
| 51 | get { return (ILookupParameter<BoolValue>)Parameters[MatchVariablesParameterName]; }
|
---|
| 52 | }
|
---|
| 53 | public ILookupParameter<BoolValue> MatchVariableWeightsParameter {
|
---|
| 54 | get { return (ILookupParameter<BoolValue>)Parameters[MatchVariableWeightsParameterName]; }
|
---|
| 55 | }
|
---|
| 56 | public ILookupParameter<BoolValue> MatchConstantValuesParameter {
|
---|
| 57 | get { return (ILookupParameter<BoolValue>)Parameters[MatchConstantValuesParameterName]; }
|
---|
| 58 | }
|
---|
| 59 | public ILookupParameter<DoubleValue> SimilarityParameter {
|
---|
| 60 | get { return (ILookupParameter<DoubleValue>)Parameters[SimilarityValuesParmeterName]; }
|
---|
| 61 | }
|
---|
| 62 |
|
---|
| 63 | public ISymbolicExpressionTree CurrentSymbolicExpressionTree {
|
---|
| 64 | get { return CurrentSymbolicExpressionTreeParameter.Value; }
|
---|
| 65 | set { CurrentSymbolicExpressionTreeParameter.Value = value; }
|
---|
| 66 | }
|
---|
| 67 |
|
---|
| 68 | public SymbolicExpressionTreeNodeSimilarityComparer SimilarityComparer { get; set; }
|
---|
| 69 |
|
---|
[9423] | 70 | public Dictionary<ISymbolicExpressionTree, SymbolicDataAnalysisExpressionTreeSimilarity.GeneticItem[]> GeneticItems;
|
---|
| 71 |
|
---|
| 72 | public int MaximumTreeDepth { get; set; }
|
---|
| 73 |
|
---|
[9293] | 74 | protected SymbolicDataAnalysisExpressionTreeSimilarityCalculator(SymbolicDataAnalysisExpressionTreeSimilarityCalculator original, Cloner cloner) : base(original, cloner) { }
|
---|
| 75 | public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicDataAnalysisExpressionTreeSimilarityCalculator(this, cloner); }
|
---|
| 76 | [StorableConstructor]
|
---|
| 77 | protected SymbolicDataAnalysisExpressionTreeSimilarityCalculator(bool deserializing) : base(deserializing) { }
|
---|
| 78 |
|
---|
| 79 | public SymbolicDataAnalysisExpressionTreeSimilarityCalculator()
|
---|
| 80 | : base() {
|
---|
| 81 | Parameters.Add(new ScopeTreeLookupParameter<ISymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic expression trees to analyze."));
|
---|
| 82 | Parameters.Add(new ValueParameter<ISymbolicExpressionTree>(CurrentSymbolicExpressionTreeParameterName, ""));
|
---|
| 83 | Parameters.Add(new LookupParameter<BoolValue>(MatchVariablesParameterName, "Specify if the symbolic expression tree comparer should match variable names."));
|
---|
| 84 | Parameters.Add(new LookupParameter<BoolValue>(MatchVariableWeightsParameterName, "Specify if the symbolic expression tree comparer should match variable weights."));
|
---|
| 85 | Parameters.Add(new LookupParameter<BoolValue>(MatchConstantValuesParameterName, "Specify if the symbolic expression tree comparer should match constant values."));
|
---|
| 86 | Parameters.Add(new LookupParameter<DoubleValue>(SimilarityValuesParmeterName, ""));
|
---|
| 87 | }
|
---|
| 88 |
|
---|
| 89 | public override IOperation Apply() {
|
---|
| 90 | var trees = SymbolicExpressionTreeParameter.ActualValue;
|
---|
| 91 |
|
---|
| 92 | double similarity = 0.0;
|
---|
| 93 | var current = CurrentSymbolicExpressionTree;
|
---|
| 94 |
|
---|
[9423] | 95 | bool found = false;
|
---|
[9293] | 96 | foreach (var tree in trees) {
|
---|
[9423] | 97 | if (tree == current) {
|
---|
| 98 | found = true;
|
---|
| 99 | continue;
|
---|
| 100 | }
|
---|
[9293] | 101 |
|
---|
[9423] | 102 | if (found) {
|
---|
| 103 | similarity += SymbolicDataAnalysisExpressionTreeSimilarity.MaxCommonSubtreeSimilarity(current, tree, SimilarityComparer);
|
---|
| 104 | // similarity += SymbolicDataAnalysisExpressionTreeSimilarity.GeneticItemSimilarity(GeneticItems[current], GeneticItems[tree], MaximumTreeDepth);
|
---|
| 105 | }
|
---|
[9293] | 106 | }
|
---|
[9423] | 107 |
|
---|
[9293] | 108 | lock (SimilarityParameter.ActualValue) {
|
---|
| 109 | SimilarityParameter.ActualValue.Value += similarity;
|
---|
| 110 | }
|
---|
| 111 | return base.Apply();
|
---|
| 112 | }
|
---|
| 113 | }
|
---|
| 114 |
|
---|
[9423] | 115 | public static class SymbolicDataAnalysisExpressionTreeSimilarity {
|
---|
[9835] | 116 | public static double CalculateSimilarity(ISymbolicExpressionTreeNode a, ISymbolicExpressionTreeNode b, SymbolicExpressionTreeNodeSimilarityComparer comp) {
|
---|
[9423] | 117 | return 2.0 * SymbolicExpressionTreeMatching.Match(a, b, comp) / (a.GetLength() + b.GetLength());
|
---|
| 118 | }
|
---|
[9293] | 119 |
|
---|
| 120 | public static double MaxCommonSubtreeSimilarity(ISymbolicExpressionTree a, ISymbolicExpressionTree b, SymbolicExpressionTreeNodeSimilarityComparer comparer) {
|
---|
| 121 | double max = 0;
|
---|
[9423] | 122 | var rootA = a.Root.GetSubtree(0).GetSubtree(0);
|
---|
| 123 | var rootB = b.Root.GetSubtree(0).GetSubtree(0);
|
---|
| 124 | foreach (var aa in rootA.IterateNodesBreadth()) {
|
---|
[9293] | 125 | int lenA = aa.GetLength();
|
---|
| 126 | if (lenA <= max) continue;
|
---|
[9423] | 127 | foreach (var bb in rootB.IterateNodesBreadth()) {
|
---|
[9293] | 128 | int lenB = bb.GetLength();
|
---|
| 129 | if (lenB <= max) continue;
|
---|
| 130 | int matches = SymbolicExpressionTreeMatching.Match(aa, bb, comparer);
|
---|
| 131 | if (max < matches) max = matches;
|
---|
| 132 | }
|
---|
| 133 | }
|
---|
[9423] | 134 | return 2.0 * max / (rootA.GetLength() + rootB.GetLength());
|
---|
[9293] | 135 | }
|
---|
| 136 |
|
---|
[9423] | 137 | public static double GeneticItemSimilarity(ISymbolicExpressionTree a, ISymbolicExpressionTree b, int maximumTreeHeight, bool preventMultipleContribution = true) {
|
---|
| 138 | const int minLevelDelta = 1;
|
---|
| 139 | const int maxLevelDelta = 4;
|
---|
| 140 |
|
---|
| 141 | var itemsA = a.GetGeneticItems(minLevelDelta, maxLevelDelta).ToArray();
|
---|
| 142 | var itemsB = b.GetGeneticItems(minLevelDelta, maxLevelDelta).ToArray();
|
---|
| 143 |
|
---|
| 144 | return GeneticItemSimilarity(itemsA, itemsB, maximumTreeHeight);
|
---|
[9293] | 145 | }
|
---|
| 146 |
|
---|
[9423] | 147 | public static double GeneticItemSimilarity(GeneticItem[] itemsA, GeneticItem[] itemsB, int maximumTreeHeight, bool preventMultipleContribution = true) {
|
---|
| 148 | double similarity = 0.0;
|
---|
| 149 | if (itemsA.Length == 0 || itemsB.Length == 0) return similarity;
|
---|
| 150 |
|
---|
| 151 | var flagsB = new bool[itemsB.Length];
|
---|
| 152 |
|
---|
| 153 | for (int i = 0; i != itemsA.Length; ++i) {
|
---|
| 154 | double simMax = 0.0;
|
---|
| 155 | int index = -1;
|
---|
| 156 | for (int j = 0; j != itemsB.Length; ++j) {
|
---|
| 157 | if (flagsB[j]) continue;
|
---|
| 158 | double sim = StructuralSimilarity(itemsA[i], itemsB[j], maximumTreeHeight);
|
---|
| 159 | if (sim > simMax) {
|
---|
| 160 | simMax = sim;
|
---|
| 161 | index = j;
|
---|
| 162 | }
|
---|
| 163 | if (preventMultipleContribution && index > -1) {
|
---|
| 164 | flagsB[index] = true;
|
---|
| 165 | }
|
---|
| 166 | }
|
---|
| 167 | similarity += simMax;
|
---|
| 168 | }
|
---|
| 169 | return similarity / itemsA.Length;
|
---|
| 170 | }
|
---|
| 171 |
|
---|
| 172 | public static double AdditiveSimilarity(ISymbolicExpressionTree a, ISymbolicExpressionTree b, SymbolicExpressionTreeNodeSimilarityComparer comparer) {
|
---|
[9293] | 173 | var nA = a.Root.GetSubtree(0).GetSubtree(0);
|
---|
| 174 | var nB = b.Root.GetSubtree(0).GetSubtree(0);
|
---|
| 175 |
|
---|
[9423] | 176 | var nodesA = nA.IterateNodesBreadth().ToArray();
|
---|
| 177 | var nodesB = nB.IterateNodesBreadth().ToArray();
|
---|
[9293] | 178 |
|
---|
[9423] | 179 | var similarities = nodesA.SelectMany(ia => nodesB, (ia, ib) => CalculateSimilarity(ia, ib, comparer)).Where(s => !s.IsAlmost(0.0)).ToList();
|
---|
[9293] | 180 |
|
---|
[9423] | 181 | double average = similarities.Count > 0 ? similarities.Average() : 0;
|
---|
| 182 | if (average > 1.0) throw new Exception("Similarity average should be less than 1.0");
|
---|
| 183 | if (average < 0.0) throw new Exception("Similarity average should be greater than 0.0");
|
---|
| 184 | return average;
|
---|
| 185 | }
|
---|
[9293] | 186 |
|
---|
[9423] | 187 | private static double StructuralSimilarity(GeneticItem g1, GeneticItem g2, int heightMax) {
|
---|
| 188 | if (!(SameType(g1.Ascendant, g2.Ascendant) && SameType(g1.Descendant, g2.Descendant))) return 0.0;
|
---|
| 189 |
|
---|
| 190 | double s1 = 1.0 - Math.Abs(g1.LevelDelta - g2.LevelDelta) / heightMax;
|
---|
| 191 | double s2 = g1.Index == g2.Index ? 1.0 : 0.0;
|
---|
| 192 | double s3 = g1.ParamA.Variant.Name.Equals(g2.ParamA.Variant.Name) ? 1.0 : 0.0;
|
---|
| 193 | double s4 = g1.ParamB.Variant.Name.Equals(g2.ParamB.Variant.Name) ? 1.0 : 0.0;
|
---|
| 194 |
|
---|
| 195 | double deltaCa = Math.Abs(g1.ParamA.Coeff - g2.ParamA.Coeff);
|
---|
| 196 | double deltaCb = Math.Abs(g1.ParamB.Coeff - g2.ParamB.Coeff);
|
---|
| 197 | double s5 = 0.0;
|
---|
| 198 | double s6 = 0.0;
|
---|
| 199 | // no time offsets so we hardcode s7 = s8 = 0.0
|
---|
| 200 | double s7 = 0.0;
|
---|
| 201 | double s8 = 0.0;
|
---|
| 202 | // variable indexes
|
---|
| 203 | double s9 = 0.0;
|
---|
| 204 | double s10 = 0.0;
|
---|
| 205 |
|
---|
| 206 | // same type with g2.Ascendant so we only do one check
|
---|
| 207 | if (g1.Ascendant is VariableTreeNode) {
|
---|
| 208 | s5 = deltaCa / (((Variable)g1.Ascendant.Symbol).WeightManipulatorSigma * 4);
|
---|
| 209 | s9 = g1.ParamA.VariableIndex.Equals(g2.ParamA.VariableIndex) ? 1.0 : 0.0;
|
---|
[9293] | 210 | }
|
---|
[9423] | 211 | if (g1.Descendant is VariableTreeNode) {
|
---|
| 212 | s6 = deltaCb / (((Variable)g1.Descendant.Symbol).WeightManipulatorSigma * 4);
|
---|
| 213 | s10 = g1.ParamB.VariableIndex.Equals(g2.ParamB.VariableIndex) ? 1.0 : 0.0;
|
---|
| 214 | }
|
---|
| 215 |
|
---|
| 216 | double similarity = 1.0;
|
---|
| 217 |
|
---|
| 218 | double[] constributors = new double[10] { s1, s2, s3, s4, s5, s6, s7, s8, s9, s10 }; // s1...s10
|
---|
| 219 | double[] coefficients = new double[10] { 0.8, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2 }; // c1...c10
|
---|
| 220 |
|
---|
| 221 | for (int i = 0; i != 10; ++i) {
|
---|
| 222 | similarity *= (1 - (1 - constributors[i]) * coefficients[i]);
|
---|
| 223 | }
|
---|
| 224 | return double.IsNaN(similarity) ? 0 : similarity;
|
---|
[9293] | 225 | }
|
---|
| 226 |
|
---|
[9423] | 227 | // genetic items for computing tree similarity (S. Winkler)
|
---|
| 228 | public class GeneticItem {
|
---|
| 229 | public ISymbolicExpressionTreeNode Ascendant;
|
---|
| 230 | public ISymbolicExpressionTreeNode Descendant;
|
---|
| 231 | public int LevelDelta;
|
---|
| 232 | public int Index;
|
---|
| 233 | public double[] Coefficients; // c_i = 0.2, i=1,...,10, d_1 = 0.8
|
---|
| 234 | // parameters for the Ascendant and Descendant
|
---|
| 235 | public GeneticItemParameters ParamA;
|
---|
| 236 | public GeneticItemParameters ParamB;
|
---|
| 237 | }
|
---|
| 238 |
|
---|
| 239 | public class GeneticItemParameters {
|
---|
| 240 | public Symbol Variant; // the variant of functions
|
---|
| 241 | public double Coeff; // the coefficient of terminals
|
---|
| 242 | public int TimeOffset; // the time offset of terminals
|
---|
| 243 | public int VariableIndex; // the variable index (of terminals)
|
---|
| 244 | }
|
---|
| 245 | // get genetic items
|
---|
| 246 | public static List<GeneticItem> GetGeneticItems(this ISymbolicExpressionTree tree, int minLevelDelta, int maxLevelDelta) {
|
---|
| 247 | return GetGeneticItems(tree.Root.GetSubtree(0).GetSubtree(0), minLevelDelta, maxLevelDelta).ToList();
|
---|
| 248 | }
|
---|
| 249 |
|
---|
| 250 | private static double Coefficient(this ISymbolicExpressionTreeNode node) {
|
---|
| 251 | var variable = node as VariableTreeNode;
|
---|
| 252 | if (variable != null)
|
---|
| 253 | return variable.Weight;
|
---|
| 254 | var constant = node as ConstantTreeNode;
|
---|
| 255 | if (constant != null)
|
---|
| 256 | return constant.Value;
|
---|
| 257 | return 0.0;
|
---|
| 258 | }
|
---|
| 259 |
|
---|
| 260 | private static int VariableIndex(this ISymbolicExpressionTreeNode node) {
|
---|
| 261 | var variable = node as VariableTreeNode;
|
---|
| 262 | if (variable != null)
|
---|
| 263 | return variable.Symbol.AllVariableNames.ToList().IndexOf(variable.VariableName);
|
---|
| 264 | return -1;
|
---|
| 265 | }
|
---|
| 266 |
|
---|
| 267 | private static IEnumerable<GeneticItem> GetGeneticItems(ISymbolicExpressionTreeNode node, int minimumLevelDelta, int maximumLevelDelta) {
|
---|
| 268 | var descendants = node.IterateNodesBreadth().Skip(1).ToArray();
|
---|
| 269 | for (int i = 0; i != descendants.Length; ++i) {
|
---|
| 270 | var descendant = descendants[i];
|
---|
| 271 | var levelDelta = node.GetBranchLevel(descendant);
|
---|
| 272 | if (!(minimumLevelDelta <= levelDelta && levelDelta <= maximumLevelDelta)) continue;
|
---|
| 273 | var p = descendant;
|
---|
| 274 | while (p.Parent != node && p.Parent != null)
|
---|
| 275 | p = p.Parent;
|
---|
| 276 | if (p.Parent == null) throw new Exception("The child is not a descendant of node");
|
---|
| 277 | var geneticItem = new GeneticItem {
|
---|
| 278 | Ascendant = node, Descendant = descendant, LevelDelta = levelDelta, Index = node.IndexOfSubtree(p),
|
---|
| 279 | ParamA = new GeneticItemParameters {
|
---|
| 280 | Coeff = node.Coefficient(), TimeOffset = 0, VariableIndex = node.VariableIndex(), Variant = (Symbol)node.Symbol
|
---|
| 281 | },
|
---|
| 282 | ParamB = new GeneticItemParameters {
|
---|
| 283 | Coeff = descendant.Coefficient(), TimeOffset = 0, VariableIndex = descendant.VariableIndex(), Variant = (Symbol)descendant.Symbol
|
---|
| 284 | }
|
---|
| 285 | };
|
---|
| 286 | yield return geneticItem;
|
---|
| 287 | }
|
---|
| 288 | }
|
---|
| 289 |
|
---|
| 290 | // returns true if both nodes are variables, or both are constants, or both are functions
|
---|
| 291 | private static bool SameType(ISymbolicExpressionTreeNode a, ISymbolicExpressionTreeNode b) {
|
---|
| 292 | if (a is VariableTreeNode) {
|
---|
| 293 | return b is VariableTreeNode;
|
---|
| 294 | }
|
---|
| 295 | if (a is ConstantTreeNode) {
|
---|
| 296 | return b is ConstantTreeNode;
|
---|
| 297 | }
|
---|
| 298 | return true;
|
---|
| 299 | }
|
---|
[9293] | 300 | }
|
---|
| 301 | }
|
---|