1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Linq;
|
---|
23 | using HeuristicLab.Core;
|
---|
24 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
25 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
|
---|
26 |
|
---|
27 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
28 | [Item("SymbolicDataAnalysisSolutionPruningOptimizer", "An operator which automatically removes nodes that have a negative impact from the tree model, optimizing the remaining constants.")]
|
---|
29 | [StorableClass]
|
---|
30 | public class SymbolicDataAnalysisRegressionSolutionPruningOptimizer : SymbolicDataAnalysisSolutionPruningOptimizer {
|
---|
31 | public override ISymbolicDataAnalysisSolution PruneAndOptimizeSolution(ISymbolicDataAnalysisSolution solution) {
|
---|
32 | var regressionSolution = (ISymbolicRegressionSolution)solution;
|
---|
33 | return PruneAndOptimizeRegressionSolution(regressionSolution);
|
---|
34 | }
|
---|
35 | /// <summary>
|
---|
36 | /// This method will walk all the levels of the symbolic regression solution model root starting from the deepest level and:
|
---|
37 | /// - it calculates the impact value of every originalNode on that level
|
---|
38 | /// - it prunes (replaces with a constant) the originalNode with the lowest negative impact value (0 or positive impacts are left unchanged)
|
---|
39 | /// - when no more nodes can be pruned, it moves on the upper level in the tree
|
---|
40 | /// - if the pruned and optimized solution is worse than the original solution (it can happen sometimes), then the original solution is returned
|
---|
41 | /// </summary>
|
---|
42 | /// <param name="solution"></param>
|
---|
43 | /// <returns></returns>
|
---|
44 | private ISymbolicRegressionSolution PruneAndOptimizeRegressionSolution(ISymbolicRegressionSolution solution) {
|
---|
45 | var calculator = new SymbolicRegressionSolutionImpactValuesCalculator();
|
---|
46 | var model = (ISymbolicRegressionModel)solution.Model;
|
---|
47 | var problemData = solution.ProblemData;
|
---|
48 | // get tree levels and iterate each level from the bottom up
|
---|
49 | var root = model.SymbolicExpressionTree.Root.GetSubtree(0).GetSubtree(0);
|
---|
50 | var levels = root.IterateNodesBreadth().GroupBy(root.GetBranchLevel).OrderByDescending(g => g.Key);
|
---|
51 |
|
---|
52 | OptimizeConstants(solution); // even if there are no negative impacts we still optimize the solution
|
---|
53 |
|
---|
54 | foreach (var level in levels) {
|
---|
55 | var nodes = level.ToArray();
|
---|
56 | double minImpact;
|
---|
57 | do {
|
---|
58 | minImpact = 0.0;
|
---|
59 | int minImpactIndex = -1;
|
---|
60 | for (int i = 0; i < nodes.Length; ++i) {
|
---|
61 | if (nodes[i] is ConstantTreeNode) continue;
|
---|
62 | var impact = calculator.CalculateImpactValue(model, nodes[i], problemData, problemData.TrainingIndices);
|
---|
63 | if (impact < minImpact) {
|
---|
64 | minImpact = impact;
|
---|
65 | minImpactIndex = i;
|
---|
66 | }
|
---|
67 | }
|
---|
68 | if (minImpact >= 0) continue;
|
---|
69 | var node = nodes[minImpactIndex];
|
---|
70 | var replacementValue = calculator.CalculateReplacementValue(model, node, problemData, problemData.TrainingIndices);
|
---|
71 | var constantNode = MakeConstantTreeNode(replacementValue);
|
---|
72 | ReplaceWithConstantNode(node, constantNode);
|
---|
73 | nodes[minImpactIndex] = constantNode;
|
---|
74 | OptimizeConstants(solution);
|
---|
75 | } while (minImpact < 0);
|
---|
76 | }
|
---|
77 |
|
---|
78 | var newSolution = (ISymbolicRegressionSolution)model.CreateRegressionSolution(problemData);
|
---|
79 | return newSolution.TrainingRSquared > solution.TrainingRSquared ? newSolution : solution;
|
---|
80 | }
|
---|
81 |
|
---|
82 | private static void OptimizeConstants(ISymbolicRegressionSolution solution) {
|
---|
83 | var model = solution.Model;
|
---|
84 | var problemData = solution.ProblemData;
|
---|
85 | SymbolicRegressionConstantOptimizationEvaluator.OptimizeConstants(model.Interpreter, model.SymbolicExpressionTree, problemData, problemData.TrainingIndices, true, 50);
|
---|
86 | }
|
---|
87 | }
|
---|
88 | }
|
---|