1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Parameters;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 | using HeuristicLab.PluginInfrastructure;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.Encodings.SymbolicExpressionTreeEncoding {
|
---|
33 | [NonDiscoverableType]
|
---|
34 | [StorableClass]
|
---|
35 | [Item("ProbabilisticTreeCreator", "An operator that creates new symbolic expression trees with uniformly distributed length")]
|
---|
36 | public class ProbabilisticTreeCreator : TracingSymbolicExpressionTreeCreator,
|
---|
37 | ISymbolicExpressionTreeSizeConstraintOperator, ISymbolicExpressionTreeGrammarBasedOperator {
|
---|
38 | private const int MAX_TRIES = 100;
|
---|
39 | private const string MaximumSymbolicExpressionTreeLengthParameterName = "MaximumSymbolicExpressionTreeLength";
|
---|
40 | private const string MaximumSymbolicExpressionTreeDepthParameterName = "MaximumSymbolicExpressionTreeDepth";
|
---|
41 | private const string SymbolicExpressionTreeGrammarParameterName = "SymbolicExpressionTreeGrammar";
|
---|
42 | private const string ClonedSymbolicExpressionTreeGrammarParameterName = "ClonedSymbolicExpressionTreeGrammar";
|
---|
43 | #region Parameter Properties
|
---|
44 | public IValueLookupParameter<IntValue> MaximumSymbolicExpressionTreeLengthParameter {
|
---|
45 | get { return (IValueLookupParameter<IntValue>)Parameters[MaximumSymbolicExpressionTreeLengthParameterName]; }
|
---|
46 | }
|
---|
47 | public IValueLookupParameter<IntValue> MaximumSymbolicExpressionTreeDepthParameter {
|
---|
48 | get { return (IValueLookupParameter<IntValue>)Parameters[MaximumSymbolicExpressionTreeDepthParameterName]; }
|
---|
49 | }
|
---|
50 | public IValueLookupParameter<ISymbolicExpressionGrammar> SymbolicExpressionTreeGrammarParameter {
|
---|
51 | get { return (IValueLookupParameter<ISymbolicExpressionGrammar>)Parameters[SymbolicExpressionTreeGrammarParameterName]; }
|
---|
52 | }
|
---|
53 | public ILookupParameter<ISymbolicExpressionGrammar> ClonedSymbolicExpressionTreeGrammarParameter {
|
---|
54 | get { return (ILookupParameter<ISymbolicExpressionGrammar>)Parameters[ClonedSymbolicExpressionTreeGrammarParameterName]; }
|
---|
55 | }
|
---|
56 | #endregion
|
---|
57 | #region Properties
|
---|
58 | public IntValue MaximumSymbolicExpressionTreeLength {
|
---|
59 | get { return MaximumSymbolicExpressionTreeLengthParameter.ActualValue; }
|
---|
60 | }
|
---|
61 | public IntValue MaximumSymbolicExpressionTreeDepth {
|
---|
62 | get { return MaximumSymbolicExpressionTreeDepthParameter.ActualValue; }
|
---|
63 | }
|
---|
64 | public ISymbolicExpressionGrammar SymbolicExpressionTreeGrammar {
|
---|
65 | get { return ClonedSymbolicExpressionTreeGrammarParameter.ActualValue; }
|
---|
66 | }
|
---|
67 | #endregion
|
---|
68 |
|
---|
69 | [StorableConstructor]
|
---|
70 | protected ProbabilisticTreeCreator(bool deserializing) : base(deserializing) { }
|
---|
71 | protected ProbabilisticTreeCreator(ProbabilisticTreeCreator original, Cloner cloner) : base(original, cloner) { }
|
---|
72 | public ProbabilisticTreeCreator()
|
---|
73 | : base() {
|
---|
74 | Parameters.Add(new ValueLookupParameter<IntValue>(MaximumSymbolicExpressionTreeLengthParameterName, "The maximal length (number of nodes) of the symbolic expression tree."));
|
---|
75 | Parameters.Add(new ValueLookupParameter<IntValue>(MaximumSymbolicExpressionTreeDepthParameterName, "The maximal depth of the symbolic expression tree (a tree with one node has depth = 0)."));
|
---|
76 | Parameters.Add(new ValueLookupParameter<ISymbolicExpressionGrammar>(SymbolicExpressionTreeGrammarParameterName, "The tree grammar that defines the correct syntax of symbolic expression trees that should be created."));
|
---|
77 | Parameters.Add(new LookupParameter<ISymbolicExpressionGrammar>(ClonedSymbolicExpressionTreeGrammarParameterName, "An immutable clone of the concrete grammar that is actually used to create and manipulate trees."));
|
---|
78 | }
|
---|
79 |
|
---|
80 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
81 | return new ProbabilisticTreeCreator(this, cloner);
|
---|
82 | }
|
---|
83 | [StorableHook(HookType.AfterDeserialization)]
|
---|
84 | private void AfterDeserialization() {
|
---|
85 | if (!Parameters.ContainsKey(ClonedSymbolicExpressionTreeGrammarParameterName))
|
---|
86 | Parameters.Add(new LookupParameter<ISymbolicExpressionGrammar>(ClonedSymbolicExpressionTreeGrammarParameterName, "An immutable clone of the concrete grammar that is actually used to create and manipulate trees."));
|
---|
87 | }
|
---|
88 |
|
---|
89 | public override IOperation Apply() {
|
---|
90 | if (ClonedSymbolicExpressionTreeGrammarParameter.ActualValue == null) {
|
---|
91 | SymbolicExpressionTreeGrammarParameter.ActualValue.ReadOnly = true;
|
---|
92 | IScope globalScope = ExecutionContext.Scope;
|
---|
93 | while (globalScope.Parent != null)
|
---|
94 | globalScope = globalScope.Parent;
|
---|
95 |
|
---|
96 | globalScope.Variables.Add(new Variable(ClonedSymbolicExpressionTreeGrammarParameterName, (ISymbolicExpressionGrammar)SymbolicExpressionTreeGrammarParameter.ActualValue.Clone()));
|
---|
97 | }
|
---|
98 | return base.Apply();
|
---|
99 | }
|
---|
100 |
|
---|
101 | protected override ISymbolicExpressionTree Create(IRandom random) {
|
---|
102 | return Create(random, SymbolicExpressionTreeGrammar, MaximumSymbolicExpressionTreeLength.Value, MaximumSymbolicExpressionTreeDepth.Value);
|
---|
103 | }
|
---|
104 |
|
---|
105 | public override ISymbolicExpressionTree CreateTree(IRandom random, ISymbolicExpressionGrammar grammar, int maxTreeLength, int maxTreeDepth) {
|
---|
106 | return Create(random, grammar, maxTreeLength, maxTreeDepth);
|
---|
107 | }
|
---|
108 |
|
---|
109 | public static ISymbolicExpressionTree Create(IRandom random, ISymbolicExpressionGrammar grammar, int maxTreeLength, int maxTreeDepth) {
|
---|
110 | SymbolicExpressionTree tree = new SymbolicExpressionTree();
|
---|
111 | var rootNode = (SymbolicExpressionTreeTopLevelNode)grammar.ProgramRootSymbol.CreateTreeNode();
|
---|
112 | if (rootNode.HasLocalParameters) rootNode.ResetLocalParameters(random);
|
---|
113 | rootNode.SetGrammar(new SymbolicExpressionTreeGrammar(grammar));
|
---|
114 | var startNode = (SymbolicExpressionTreeTopLevelNode)grammar.StartSymbol.CreateTreeNode();
|
---|
115 | startNode.SetGrammar(new SymbolicExpressionTreeGrammar(grammar));
|
---|
116 | if (startNode.HasLocalParameters) startNode.ResetLocalParameters(random);
|
---|
117 | rootNode.AddSubtree(startNode);
|
---|
118 | PTC2(random, startNode, maxTreeLength, maxTreeDepth);
|
---|
119 | tree.Root = rootNode;
|
---|
120 | return tree;
|
---|
121 | }
|
---|
122 |
|
---|
123 | private class TreeExtensionPoint {
|
---|
124 | public ISymbolicExpressionTreeNode Parent { get; set; }
|
---|
125 | public int ChildIndex { get; set; }
|
---|
126 | public int ExtensionPointDepth { get; set; }
|
---|
127 | public int MaximumExtensionLength { get; set; }
|
---|
128 | public int MinimumExtensionLength { get; set; }
|
---|
129 | }
|
---|
130 |
|
---|
131 | public static void PTC2(IRandom random, ISymbolicExpressionTreeNode seedNode,
|
---|
132 | int maxLength, int maxDepth) {
|
---|
133 | // make sure it is possible to create a trees smaller than maxLength and maxDepth
|
---|
134 | if (seedNode.Grammar.GetMinimumExpressionLength(seedNode.Symbol) > maxLength)
|
---|
135 | throw new ArgumentException("Cannot create trees of length " + maxLength + " or shorter because of grammar constraints.", "maxLength");
|
---|
136 | if (seedNode.Grammar.GetMinimumExpressionDepth(seedNode.Symbol) > maxDepth)
|
---|
137 | throw new ArgumentException("Cannot create trees of depth " + maxDepth + " or smaller because of grammar constraints.", "maxDepth");
|
---|
138 |
|
---|
139 | // tree length is limited by the grammar and by the explicit size constraints
|
---|
140 | int allowedMinLength = seedNode.Grammar.GetMinimumExpressionLength(seedNode.Symbol);
|
---|
141 | int allowedMaxLength = Math.Min(maxLength, seedNode.Grammar.GetMaximumExpressionLength(seedNode.Symbol, maxDepth));
|
---|
142 | int tries = 0;
|
---|
143 | while (tries++ < MAX_TRIES) {
|
---|
144 | // select a target tree length uniformly in the possible range (as determined by explicit limits and limits of the grammar)
|
---|
145 | int targetTreeLength;
|
---|
146 | targetTreeLength = random.Next(allowedMinLength, allowedMaxLength + 1);
|
---|
147 | if (targetTreeLength <= 1 || maxDepth <= 1) return;
|
---|
148 |
|
---|
149 | bool success = TryCreateFullTreeFromSeed(random, seedNode, targetTreeLength - 1, maxDepth - 1);
|
---|
150 |
|
---|
151 | // if successful => check constraints and return the tree if everything looks ok
|
---|
152 | if (success && seedNode.GetLength() <= maxLength && seedNode.GetDepth() <= maxDepth) {
|
---|
153 | return;
|
---|
154 | } else {
|
---|
155 | // clean seedNode
|
---|
156 | while (seedNode.Subtrees.Count() > 0) seedNode.RemoveSubtree(0);
|
---|
157 | }
|
---|
158 | // try a different length MAX_TRIES times
|
---|
159 | }
|
---|
160 | throw new ArgumentException("Couldn't create a random valid tree.");
|
---|
161 | }
|
---|
162 |
|
---|
163 | private static bool TryCreateFullTreeFromSeed(IRandom random, ISymbolicExpressionTreeNode root,
|
---|
164 | int targetLength, int maxDepth) {
|
---|
165 | List<TreeExtensionPoint> extensionPoints = new List<TreeExtensionPoint>();
|
---|
166 | int currentLength = 0;
|
---|
167 | int actualArity = SampleArity(random, root, targetLength, maxDepth);
|
---|
168 | if (actualArity < 0) return false;
|
---|
169 |
|
---|
170 | for (int i = 0; i < actualArity; i++) {
|
---|
171 | // insert a dummy sub-tree and add the pending extension to the list
|
---|
172 | var dummy = new SymbolicExpressionTreeNode();
|
---|
173 | root.AddSubtree(dummy);
|
---|
174 | var x = new TreeExtensionPoint { Parent = root, ChildIndex = i, ExtensionPointDepth = 0 };
|
---|
175 | FillExtensionLengths(x, maxDepth);
|
---|
176 | extensionPoints.Add(x);
|
---|
177 | }
|
---|
178 | //necessary to use long data type as the extension point length could be int.MaxValue
|
---|
179 | long minExtensionPointsLength = extensionPoints.Select(x => (long)x.MinimumExtensionLength).Sum();
|
---|
180 | long maxExtensionPointsLength = extensionPoints.Select(x => (long)x.MaximumExtensionLength).Sum();
|
---|
181 |
|
---|
182 | // while there are pending extension points and we have not reached the limit of adding new extension points
|
---|
183 | while (extensionPoints.Count > 0 && minExtensionPointsLength + currentLength <= targetLength) {
|
---|
184 | int randomIndex = random.Next(extensionPoints.Count);
|
---|
185 | TreeExtensionPoint nextExtension = extensionPoints[randomIndex];
|
---|
186 | extensionPoints.RemoveAt(randomIndex);
|
---|
187 | ISymbolicExpressionTreeNode parent = nextExtension.Parent;
|
---|
188 | int argumentIndex = nextExtension.ChildIndex;
|
---|
189 | int extensionDepth = nextExtension.ExtensionPointDepth;
|
---|
190 |
|
---|
191 | if (parent.Grammar.GetMinimumExpressionDepth(parent.Symbol) > maxDepth - extensionDepth) {
|
---|
192 | ReplaceWithMinimalTree(random, root, parent, argumentIndex);
|
---|
193 | int insertedTreeLength = parent.GetSubtree(argumentIndex).GetLength();
|
---|
194 | currentLength += insertedTreeLength;
|
---|
195 | minExtensionPointsLength -= insertedTreeLength;
|
---|
196 | maxExtensionPointsLength -= insertedTreeLength;
|
---|
197 | } else {
|
---|
198 | //remove currently chosen extension point from calculation
|
---|
199 | minExtensionPointsLength -= nextExtension.MinimumExtensionLength;
|
---|
200 | maxExtensionPointsLength -= nextExtension.MaximumExtensionLength;
|
---|
201 |
|
---|
202 | var symbols = from s in parent.Grammar.GetAllowedChildSymbols(parent.Symbol, argumentIndex)
|
---|
203 | where s.InitialFrequency > 0.0
|
---|
204 | where parent.Grammar.GetMinimumExpressionDepth(s) <= maxDepth - extensionDepth
|
---|
205 | where parent.Grammar.GetMinimumExpressionLength(s) <= targetLength - currentLength - minExtensionPointsLength
|
---|
206 | select s;
|
---|
207 | if (maxExtensionPointsLength < targetLength - currentLength)
|
---|
208 | symbols = from s in symbols
|
---|
209 | where parent.Grammar.GetMaximumExpressionLength(s, maxDepth - extensionDepth) >= targetLength - currentLength - maxExtensionPointsLength
|
---|
210 | select s;
|
---|
211 | var allowedSymbols = symbols.ToList();
|
---|
212 |
|
---|
213 | if (allowedSymbols.Count == 0) return false;
|
---|
214 | var weights = allowedSymbols.Select(x => x.InitialFrequency).ToList();
|
---|
215 | var selectedSymbol = allowedSymbols.SelectRandom(weights, random);
|
---|
216 | ISymbolicExpressionTreeNode newTree = selectedSymbol.CreateTreeNode();
|
---|
217 | if (newTree.HasLocalParameters) newTree.ResetLocalParameters(random);
|
---|
218 | parent.RemoveSubtree(argumentIndex);
|
---|
219 | parent.InsertSubtree(argumentIndex, newTree);
|
---|
220 |
|
---|
221 | var topLevelNode = newTree as SymbolicExpressionTreeTopLevelNode;
|
---|
222 | if (topLevelNode != null)
|
---|
223 | topLevelNode.SetGrammar((ISymbolicExpressionTreeGrammar)root.Grammar.Clone());
|
---|
224 |
|
---|
225 | currentLength++;
|
---|
226 | actualArity = SampleArity(random, newTree, targetLength - currentLength, maxDepth - extensionDepth);
|
---|
227 | if (actualArity < 0) return false;
|
---|
228 | for (int i = 0; i < actualArity; i++) {
|
---|
229 | // insert a dummy sub-tree and add the pending extension to the list
|
---|
230 | var dummy = new SymbolicExpressionTreeNode();
|
---|
231 | newTree.AddSubtree(dummy);
|
---|
232 | var x = new TreeExtensionPoint { Parent = newTree, ChildIndex = i, ExtensionPointDepth = extensionDepth + 1 };
|
---|
233 | FillExtensionLengths(x, maxDepth);
|
---|
234 | extensionPoints.Add(x);
|
---|
235 | maxExtensionPointsLength += x.MaximumExtensionLength;
|
---|
236 | minExtensionPointsLength += x.MinimumExtensionLength;
|
---|
237 | }
|
---|
238 | }
|
---|
239 | }
|
---|
240 | // fill all pending extension points
|
---|
241 | while (extensionPoints.Count > 0) {
|
---|
242 | int randomIndex = random.Next(extensionPoints.Count);
|
---|
243 | TreeExtensionPoint nextExtension = extensionPoints[randomIndex];
|
---|
244 | extensionPoints.RemoveAt(randomIndex);
|
---|
245 | ISymbolicExpressionTreeNode parent = nextExtension.Parent;
|
---|
246 | int a = nextExtension.ChildIndex;
|
---|
247 | ReplaceWithMinimalTree(random, root, parent, a);
|
---|
248 | }
|
---|
249 | return true;
|
---|
250 | }
|
---|
251 |
|
---|
252 | private static void ReplaceWithMinimalTree(IRandom random, ISymbolicExpressionTreeNode root, ISymbolicExpressionTreeNode parent,
|
---|
253 | int childIndex) {
|
---|
254 | // determine possible symbols that will lead to the smallest possible tree
|
---|
255 | var possibleSymbols = (from s in parent.Grammar.GetAllowedChildSymbols(parent.Symbol, childIndex)
|
---|
256 | where s.InitialFrequency > 0.0
|
---|
257 | group s by parent.Grammar.GetMinimumExpressionLength(s) into g
|
---|
258 | orderby g.Key
|
---|
259 | select g).First().ToList();
|
---|
260 | var weights = possibleSymbols.Select(x => x.InitialFrequency).ToList();
|
---|
261 | var selectedSymbol = possibleSymbols.SelectRandom(weights, random);
|
---|
262 | var tree = selectedSymbol.CreateTreeNode();
|
---|
263 | if (tree.HasLocalParameters) tree.ResetLocalParameters(random);
|
---|
264 | parent.RemoveSubtree(childIndex);
|
---|
265 | parent.InsertSubtree(childIndex, tree);
|
---|
266 |
|
---|
267 | var topLevelNode = tree as SymbolicExpressionTreeTopLevelNode;
|
---|
268 | if (topLevelNode != null)
|
---|
269 | topLevelNode.SetGrammar((ISymbolicExpressionTreeGrammar)root.Grammar.Clone());
|
---|
270 |
|
---|
271 | for (int i = 0; i < tree.Grammar.GetMinimumSubtreeCount(tree.Symbol); i++) {
|
---|
272 | // insert a dummy sub-tree and add the pending extension to the list
|
---|
273 | var dummy = new SymbolicExpressionTreeNode();
|
---|
274 | tree.AddSubtree(dummy);
|
---|
275 | // replace the just inserted dummy by recursive application
|
---|
276 | ReplaceWithMinimalTree(random, root, tree, i);
|
---|
277 | }
|
---|
278 | }
|
---|
279 |
|
---|
280 | private static void FillExtensionLengths(TreeExtensionPoint extension, int maxDepth) {
|
---|
281 | var grammar = extension.Parent.Grammar;
|
---|
282 | int maxLength = int.MinValue;
|
---|
283 | int minLength = int.MaxValue;
|
---|
284 | foreach (ISymbol s in grammar.GetAllowedChildSymbols(extension.Parent.Symbol, extension.ChildIndex)) {
|
---|
285 | if (s.InitialFrequency > 0.0) {
|
---|
286 | int max = grammar.GetMaximumExpressionLength(s, maxDepth - extension.ExtensionPointDepth);
|
---|
287 | maxLength = Math.Max(maxLength, max);
|
---|
288 | int min = grammar.GetMinimumExpressionLength(s);
|
---|
289 | minLength = Math.Min(minLength, min);
|
---|
290 | }
|
---|
291 | }
|
---|
292 |
|
---|
293 | extension.MaximumExtensionLength = maxLength;
|
---|
294 | extension.MinimumExtensionLength = minLength;
|
---|
295 | }
|
---|
296 |
|
---|
297 | private static int SampleArity(IRandom random, ISymbolicExpressionTreeNode node, int targetLength, int maxDepth) {
|
---|
298 | // select actualArity randomly with the constraint that the sub-trees in the minimal arity can become large enough
|
---|
299 | int minArity = node.Grammar.GetMinimumSubtreeCount(node.Symbol);
|
---|
300 | int maxArity = node.Grammar.GetMaximumSubtreeCount(node.Symbol);
|
---|
301 | if (maxArity > targetLength) {
|
---|
302 | maxArity = targetLength;
|
---|
303 | }
|
---|
304 | if (minArity == maxArity) return minArity;
|
---|
305 |
|
---|
306 | // the min number of sub-trees has to be set to a value that is large enough so that the largest possible tree is at least tree length
|
---|
307 | // if 1..3 trees are possible and the largest possible first sub-tree is smaller larger than the target length then minArity should be at least 2
|
---|
308 | long aggregatedLongestExpressionLength = 0;
|
---|
309 | for (int i = 0; i < maxArity; i++) {
|
---|
310 | aggregatedLongestExpressionLength += (from s in node.Grammar.GetAllowedChildSymbols(node.Symbol, i)
|
---|
311 | where s.InitialFrequency > 0.0
|
---|
312 | select node.Grammar.GetMaximumExpressionLength(s, maxDepth)).Max();
|
---|
313 | if (i > minArity && aggregatedLongestExpressionLength < targetLength) minArity = i + 1;
|
---|
314 | else break;
|
---|
315 | }
|
---|
316 |
|
---|
317 | // the max number of sub-trees has to be set to a value that is small enough so that the smallest possible tree is at most tree length
|
---|
318 | // if 1..3 trees are possible and the smallest possible first sub-tree is already larger than the target length then maxArity should be at most 0
|
---|
319 | long aggregatedShortestExpressionLength = 0;
|
---|
320 | for (int i = 0; i < maxArity; i++) {
|
---|
321 | aggregatedShortestExpressionLength += (from s in node.Grammar.GetAllowedChildSymbols(node.Symbol, i)
|
---|
322 | where s.InitialFrequency > 0.0
|
---|
323 | select node.Grammar.GetMinimumExpressionLength(s)).Min();
|
---|
324 | if (aggregatedShortestExpressionLength > targetLength) {
|
---|
325 | maxArity = i;
|
---|
326 | break;
|
---|
327 | }
|
---|
328 | }
|
---|
329 | if (minArity > maxArity) return -1;
|
---|
330 | return random.Next(minArity, maxArity + 1);
|
---|
331 | }
|
---|
332 |
|
---|
333 | }
|
---|
334 | } |
---|