[11219] | 1 | #region License Information
|
---|
[12891] | 2 |
|
---|
[11219] | 3 | /* HeuristicLab
|
---|
[14312] | 4 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[11219] | 5 | *
|
---|
| 6 | * This file is part of HeuristicLab.
|
---|
| 7 | *
|
---|
| 8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 9 | * it under the terms of the GNU General Public License as published by
|
---|
| 10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 11 | * (at your option) any later version.
|
---|
| 12 | *
|
---|
| 13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 16 | * GNU General Public License for more details.
|
---|
| 17 | *
|
---|
| 18 | * You should have received a copy of the GNU General Public License
|
---|
| 19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 20 | */
|
---|
| 21 |
|
---|
[12891] | 22 | #endregion License Information
|
---|
| 23 |
|
---|
[11219] | 24 | using System;
|
---|
| 25 | using System.Collections.Generic;
|
---|
[11486] | 26 | using System.Diagnostics;
|
---|
| 27 | using System.Globalization;
|
---|
[11219] | 28 | using System.Linq;
|
---|
| 29 | using HeuristicLab.Common;
|
---|
| 30 | using HeuristicLab.Core;
|
---|
| 31 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 32 | using HeuristicLab.Optimization.Operators;
|
---|
| 33 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 34 |
|
---|
[11221] | 35 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
[12891] | 36 |
|
---|
[11219] | 37 | [StorableClass]
|
---|
[11910] | 38 | [Item("SymbolicExpressionTreeBottomUpSimilarityCalculator", "A similarity calculator which uses the tree bottom-up distance as a similarity metric.")]
|
---|
[12155] | 39 | public class SymbolicExpressionTreeBottomUpSimilarityCalculator : SolutionSimilarityCalculator {
|
---|
[11486] | 40 | private readonly HashSet<string> commutativeSymbols = new HashSet<string> { "Addition", "Multiplication", "Average", "And", "Or", "Xor" };
|
---|
[12155] | 41 |
|
---|
[12891] | 42 | public SymbolicExpressionTreeBottomUpSimilarityCalculator() {
|
---|
| 43 | }
|
---|
| 44 |
|
---|
[12155] | 45 | protected override bool IsCommutative { get { return true; } }
|
---|
[11219] | 46 |
|
---|
[12287] | 47 | public bool MatchVariableWeights { get; set; }
|
---|
| 48 | public bool MatchConstantValues { get; set; }
|
---|
| 49 |
|
---|
[11918] | 50 | [StorableConstructor]
|
---|
[11921] | 51 | protected SymbolicExpressionTreeBottomUpSimilarityCalculator(bool deserializing)
|
---|
[11918] | 52 | : base(deserializing) {
|
---|
| 53 | }
|
---|
| 54 |
|
---|
[11910] | 55 | protected SymbolicExpressionTreeBottomUpSimilarityCalculator(SymbolicExpressionTreeBottomUpSimilarityCalculator original, Cloner cloner)
|
---|
[11486] | 56 | : base(original, cloner) {
|
---|
[11239] | 57 | }
|
---|
| 58 |
|
---|
[11219] | 59 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
[11910] | 60 | return new SymbolicExpressionTreeBottomUpSimilarityCalculator(this, cloner);
|
---|
[11219] | 61 | }
|
---|
| 62 |
|
---|
[11486] | 63 | public double CalculateSimilarity(ISymbolicExpressionTree t1, ISymbolicExpressionTree t2) {
|
---|
| 64 | if (t1 == t2)
|
---|
| 65 | return 1;
|
---|
| 66 |
|
---|
| 67 | var map = ComputeBottomUpMapping(t1.Root, t2.Root);
|
---|
| 68 | return 2.0 * map.Count / (t1.Length + t2.Length);
|
---|
[11219] | 69 | }
|
---|
| 70 |
|
---|
| 71 | public override double CalculateSolutionSimilarity(IScope leftSolution, IScope rightSolution) {
|
---|
[12155] | 72 | if (leftSolution == rightSolution)
|
---|
| 73 | return 1.0;
|
---|
| 74 |
|
---|
[11219] | 75 | var t1 = leftSolution.Variables[SolutionVariableName].Value as ISymbolicExpressionTree;
|
---|
| 76 | var t2 = rightSolution.Variables[SolutionVariableName].Value as ISymbolicExpressionTree;
|
---|
| 77 |
|
---|
| 78 | if (t1 == null || t2 == null)
|
---|
| 79 | throw new ArgumentException("Cannot calculate similarity when one of the arguments is null.");
|
---|
| 80 |
|
---|
[11486] | 81 | var similarity = CalculateSimilarity(t1, t2);
|
---|
[11224] | 82 | if (similarity > 1.0)
|
---|
| 83 | throw new Exception("Similarity value cannot be greater than 1");
|
---|
| 84 |
|
---|
| 85 | return similarity;
|
---|
[11219] | 86 | }
|
---|
| 87 |
|
---|
[11221] | 88 | public Dictionary<ISymbolicExpressionTreeNode, ISymbolicExpressionTreeNode> ComputeBottomUpMapping(ISymbolicExpressionTreeNode n1, ISymbolicExpressionTreeNode n2) {
|
---|
[11486] | 89 | var comparer = new SymbolicExpressionTreeNodeComparer(); // use a node comparer because it's faster than calling node.ToString() (strings are expensive) and comparing strings
|
---|
[11221] | 90 | var compactedGraph = Compact(n1, n2);
|
---|
[11219] | 91 |
|
---|
| 92 | var forwardMap = new Dictionary<ISymbolicExpressionTreeNode, ISymbolicExpressionTreeNode>(); // nodes of t1 => nodes of t2
|
---|
| 93 | var reverseMap = new Dictionary<ISymbolicExpressionTreeNode, ISymbolicExpressionTreeNode>(); // nodes of t2 => nodes of t1
|
---|
| 94 |
|
---|
[11225] | 95 | // visit nodes in order of decreasing height to ensure correct mapping
|
---|
[12017] | 96 | var nodes1 = n1.IterateNodesPrefix().OrderByDescending(x => x.GetDepth()).ToList();
|
---|
[11487] | 97 | var nodes2 = n2.IterateNodesPrefix().ToList();
|
---|
[11894] | 98 | for (int i = 0; i < nodes1.Count; ++i) {
|
---|
| 99 | var v = nodes1[i];
|
---|
[11225] | 100 | if (forwardMap.ContainsKey(v))
|
---|
| 101 | continue;
|
---|
[11219] | 102 | var kv = compactedGraph[v];
|
---|
| 103 | ISymbolicExpressionTreeNode w = null;
|
---|
[11894] | 104 | for (int j = 0; j < nodes2.Count; ++j) {
|
---|
| 105 | var t = nodes2[j];
|
---|
[11225] | 106 | if (reverseMap.ContainsKey(t) || compactedGraph[t] != kv)
|
---|
| 107 | continue;
|
---|
[11219] | 108 | w = t;
|
---|
| 109 | break;
|
---|
| 110 | }
|
---|
| 111 | if (w == null) continue;
|
---|
| 112 |
|
---|
[12017] | 113 | // at this point we know that v and w are isomorphic, however, the mapping cannot be done directly
|
---|
[12891] | 114 | // (as in the paper) because the trees are unordered (subtree order might differ). the solution is
|
---|
[12017] | 115 | // to sort subtrees from under commutative labels (this will work because the subtrees are isomorphic!)
|
---|
| 116 | // while iterating over the two subtrees
|
---|
[11894] | 117 | var vv = IterateBreadthOrdered(v, comparer).ToList();
|
---|
| 118 | var ww = IterateBreadthOrdered(w, comparer).ToList();
|
---|
| 119 | int len = Math.Min(vv.Count, ww.Count);
|
---|
| 120 | for (int j = 0; j < len; ++j) {
|
---|
| 121 | var s = vv[j];
|
---|
| 122 | var t = ww[j];
|
---|
[11486] | 123 | Debug.Assert(!reverseMap.ContainsKey(t));
|
---|
[11225] | 124 |
|
---|
[11219] | 125 | forwardMap[s] = t;
|
---|
| 126 | reverseMap[t] = s;
|
---|
| 127 | }
|
---|
| 128 | }
|
---|
| 129 |
|
---|
| 130 | return forwardMap;
|
---|
| 131 | }
|
---|
| 132 |
|
---|
| 133 | /// <summary>
|
---|
| 134 | /// Creates a compact representation of the two trees as a directed acyclic graph
|
---|
| 135 | /// </summary>
|
---|
[11229] | 136 | /// <param name="n1">The root of the first tree</param>
|
---|
| 137 | /// <param name="n2">The root of the second tree</param>
|
---|
[11219] | 138 | /// <returns>The compacted DAG representing the two trees</returns>
|
---|
[11229] | 139 | private Dictionary<ISymbolicExpressionTreeNode, GraphNode> Compact(ISymbolicExpressionTreeNode n1, ISymbolicExpressionTreeNode n2) {
|
---|
| 140 | var nodeMap = new Dictionary<ISymbolicExpressionTreeNode, GraphNode>(); // K
|
---|
| 141 | var labelMap = new Dictionary<string, GraphNode>(); // L
|
---|
[11219] | 142 | var childrenCount = new Dictionary<ISymbolicExpressionTreeNode, int>(); // Children
|
---|
| 143 |
|
---|
[11221] | 144 | var nodes = n1.IterateNodesPostfix().Concat(n2.IterateNodesPostfix()); // the disjoint union F
|
---|
[11487] | 145 | var list = new List<GraphNode>();
|
---|
[11219] | 146 | var queue = new Queue<ISymbolicExpressionTreeNode>();
|
---|
| 147 |
|
---|
| 148 | foreach (var n in nodes) {
|
---|
| 149 | if (n.SubtreeCount == 0) {
|
---|
[12017] | 150 | var label = GetLabel(n);
|
---|
[11229] | 151 | if (!labelMap.ContainsKey(label)) {
|
---|
| 152 | var z = new GraphNode { SymbolicExpressionTreeNode = n, Label = label };
|
---|
| 153 | labelMap[z.Label] = z;
|
---|
[11225] | 154 | }
|
---|
[11229] | 155 | nodeMap[n] = labelMap[label];
|
---|
[11219] | 156 | queue.Enqueue(n);
|
---|
| 157 | } else {
|
---|
| 158 | childrenCount[n] = n.SubtreeCount;
|
---|
| 159 | }
|
---|
| 160 | }
|
---|
| 161 | while (queue.Any()) {
|
---|
[11229] | 162 | var n = queue.Dequeue();
|
---|
| 163 | if (n.SubtreeCount > 0) {
|
---|
[11894] | 164 | bool found = false;
|
---|
[11229] | 165 | var label = n.Symbol.Name;
|
---|
| 166 | var depth = n.GetDepth();
|
---|
[11219] | 167 |
|
---|
[11894] | 168 | bool sort = n.SubtreeCount > 1 && commutativeSymbols.Contains(label);
|
---|
| 169 | var nSubtrees = n.Subtrees.Select(x => nodeMap[x]).ToList();
|
---|
| 170 | if (sort) nSubtrees.Sort((a, b) => string.CompareOrdinal(a.Label, b.Label));
|
---|
[11219] | 171 |
|
---|
[11229] | 172 | for (int i = list.Count - 1; i >= 0; --i) {
|
---|
| 173 | var w = list[i];
|
---|
[11894] | 174 | if (!(n.SubtreeCount == w.SubtreeCount && label == w.Label && depth == w.Depth))
|
---|
[11219] | 175 | continue;
|
---|
| 176 |
|
---|
| 177 | // sort V and W when the symbol is commutative because we are dealing with unordered trees
|
---|
[11229] | 178 | var m = w.SymbolicExpressionTreeNode;
|
---|
[11894] | 179 | var mSubtrees = m.Subtrees.Select(x => nodeMap[x]).ToList();
|
---|
| 180 | if (sort) mSubtrees.Sort((a, b) => string.CompareOrdinal(a.Label, b.Label));
|
---|
[11219] | 181 |
|
---|
[11894] | 182 | found = nSubtrees.SequenceEqual(mSubtrees);
|
---|
| 183 | if (found) {
|
---|
[11229] | 184 | nodeMap[n] = w;
|
---|
[11219] | 185 | break;
|
---|
| 186 | }
|
---|
[11229] | 187 | }
|
---|
[11219] | 188 |
|
---|
| 189 | if (!found) {
|
---|
[11486] | 190 | var w = new GraphNode { SymbolicExpressionTreeNode = n, Label = label, Depth = depth };
|
---|
[11229] | 191 | list.Add(w);
|
---|
| 192 | nodeMap[n] = w;
|
---|
| 193 | }
|
---|
| 194 | }
|
---|
[11219] | 195 |
|
---|
[11486] | 196 | if (n == n1 || n == n2)
|
---|
| 197 | continue;
|
---|
| 198 |
|
---|
[11229] | 199 | var p = n.Parent;
|
---|
[11219] | 200 | if (p == null)
|
---|
| 201 | continue;
|
---|
| 202 |
|
---|
| 203 | childrenCount[p]--;
|
---|
| 204 |
|
---|
| 205 | if (childrenCount[p] == 0)
|
---|
| 206 | queue.Enqueue(p);
|
---|
[11220] | 207 | }
|
---|
[11219] | 208 |
|
---|
[11229] | 209 | return nodeMap;
|
---|
[11219] | 210 | }
|
---|
| 211 |
|
---|
[11486] | 212 | private IEnumerable<ISymbolicExpressionTreeNode> IterateBreadthOrdered(ISymbolicExpressionTreeNode node, ISymbolicExpressionTreeNodeComparer comparer) {
|
---|
[11219] | 213 | var list = new List<ISymbolicExpressionTreeNode> { node };
|
---|
| 214 | int i = 0;
|
---|
| 215 | while (i < list.Count) {
|
---|
| 216 | var n = list[i];
|
---|
| 217 | if (n.SubtreeCount > 0) {
|
---|
[11486] | 218 | var subtrees = commutativeSymbols.Contains(node.Symbol.Name) ? n.Subtrees.OrderBy(x => x, comparer) : n.Subtrees;
|
---|
[11219] | 219 | list.AddRange(subtrees);
|
---|
| 220 | }
|
---|
| 221 | i++;
|
---|
| 222 | }
|
---|
| 223 | return list;
|
---|
| 224 | }
|
---|
| 225 |
|
---|
[12287] | 226 | private string GetLabel(ISymbolicExpressionTreeNode node) {
|
---|
[11486] | 227 | if (node.SubtreeCount > 0)
|
---|
| 228 | return node.Symbol.Name;
|
---|
| 229 |
|
---|
| 230 | var constant = node as ConstantTreeNode;
|
---|
| 231 | if (constant != null)
|
---|
[12287] | 232 | return MatchConstantValues ? constant.Value.ToString(CultureInfo.InvariantCulture) : node.Symbol.Name;
|
---|
[11965] | 233 |
|
---|
[11486] | 234 | var variable = node as VariableTreeNode;
|
---|
[11965] | 235 | if (variable != null)
|
---|
[12287] | 236 | return MatchVariableWeights ? variable.Weight + variable.VariableName : variable.VariableName;
|
---|
[11486] | 237 |
|
---|
| 238 | return node.ToString();
|
---|
| 239 | }
|
---|
| 240 |
|
---|
[11229] | 241 | private class GraphNode {
|
---|
| 242 | public ISymbolicExpressionTreeNode SymbolicExpressionTreeNode;
|
---|
| 243 | public string Label;
|
---|
| 244 | public int Depth;
|
---|
[11894] | 245 | public int SubtreeCount { get { return SymbolicExpressionTreeNode.SubtreeCount; } }
|
---|
[11219] | 246 | }
|
---|
| 247 | }
|
---|
[12891] | 248 | } |
---|