1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections;
|
---|
24 | using System.Collections.Generic;
|
---|
25 | using System.Linq;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Data;
|
---|
29 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
30 | using HeuristicLab.EvolutionTracking;
|
---|
31 | using HeuristicLab.Parameters;
|
---|
32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
33 |
|
---|
34 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
35 | [Item("UpdateQualityOperator", "Put the estimated values of the tree in the scope to be used by the phenotypic similarity calculator")]
|
---|
36 | [StorableClass]
|
---|
37 | public class UpdateQualityOperator : EvolutionTrackingOperator<ISymbolicExpressionTree> {
|
---|
38 | private const string ProblemDataParameterName = "ProblemData";
|
---|
39 | private const string InterpreterParameterName = "SymbolicExpressionTreeInterpreter";
|
---|
40 | private const string EstimationLimitsParameterName = "EstimationLimits";
|
---|
41 | private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
|
---|
42 | private const string ScaleEstimatedValuesParameterName = "ScaleEstimatedValues";
|
---|
43 |
|
---|
44 | #region parameters
|
---|
45 | public ILookupParameter<IRegressionProblemData> ProblemDataParameter {
|
---|
46 | get { return (ILookupParameter<IRegressionProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
47 | }
|
---|
48 | public ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter> InterpreterParameter {
|
---|
49 | get { return (ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>)Parameters[InterpreterParameterName]; }
|
---|
50 | }
|
---|
51 | public ILookupParameter<DoubleLimit> EstimationLimitsParameter {
|
---|
52 | get { return (ILookupParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
|
---|
53 | }
|
---|
54 | public ILookupParameter<ISymbolicExpressionTree> SymbolicExpressionTreeParameter {
|
---|
55 | get { return (ILookupParameter<ISymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
|
---|
56 | }
|
---|
57 | public ILookupParameter<BoolValue> ScaleEstimatedValuesParameter {
|
---|
58 | get { return (ILookupParameter<BoolValue>)Parameters[ScaleEstimatedValuesParameterName]; }
|
---|
59 | }
|
---|
60 | #endregion
|
---|
61 |
|
---|
62 | public UpdateQualityOperator() {
|
---|
63 | Parameters.Add(new LookupParameter<IRegressionProblemData>(ProblemDataParameterName));
|
---|
64 | Parameters.Add(new LookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>(InterpreterParameterName));
|
---|
65 | Parameters.Add(new LookupParameter<DoubleLimit>(EstimationLimitsParameterName));
|
---|
66 | Parameters.Add(new LookupParameter<ISymbolicExpressionTree>(SymbolicExpressionTreeParameterName));
|
---|
67 | Parameters.Add(new LookupParameter<BoolValue>(ScaleEstimatedValuesParameterName));
|
---|
68 | }
|
---|
69 |
|
---|
70 | [StorableConstructor]
|
---|
71 | protected UpdateQualityOperator(bool deserializing) : base(deserializing) { }
|
---|
72 |
|
---|
73 | protected UpdateQualityOperator(UpdateQualityOperator original, Cloner cloner) : base(original, cloner) {
|
---|
74 | }
|
---|
75 |
|
---|
76 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
77 | return new UpdateQualityOperator(this, cloner);
|
---|
78 | }
|
---|
79 |
|
---|
80 | public override IOperation Apply() {
|
---|
81 | var tree = SymbolicExpressionTreeParameter.ActualValue;
|
---|
82 | var problemData = ProblemDataParameter.ActualValue;
|
---|
83 | var estimationLimits = EstimationLimitsParameter.ActualValue;
|
---|
84 | var interpreter = InterpreterParameter.ActualValue;
|
---|
85 |
|
---|
86 | var estimatedValues = interpreter.GetSymbolicExpressionTreeValues(tree, problemData.Dataset, problemData.TrainingIndices);
|
---|
87 | var targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices);
|
---|
88 |
|
---|
89 | var scaleEstimatedValues = ScaleEstimatedValuesParameter.ActualValue.Value;
|
---|
90 |
|
---|
91 | IEnumerable<double> scaled;
|
---|
92 | if (scaleEstimatedValues) {
|
---|
93 | var linearScalingCalculator = new OnlineLinearScalingParameterCalculator();
|
---|
94 |
|
---|
95 | var e1 = estimatedValues.GetEnumerator();
|
---|
96 | var e2 = targetValues.GetEnumerator();
|
---|
97 |
|
---|
98 | int count = 0;
|
---|
99 | while (e1.MoveNext() && e2.MoveNext()) {
|
---|
100 | var estimated = e1.Current;
|
---|
101 | var target = e2.Current;
|
---|
102 | if (!double.IsNaN(estimated) && !double.IsInfinity(estimated))
|
---|
103 | linearScalingCalculator.Add(estimated, target);
|
---|
104 | ++count;
|
---|
105 | }
|
---|
106 | if (e1.MoveNext() || e2.MoveNext())
|
---|
107 | throw new ArgumentException("Number of elements in target and estimated values enumeration do not match.");
|
---|
108 |
|
---|
109 | double alpha = linearScalingCalculator.Alpha;
|
---|
110 | double beta = linearScalingCalculator.Beta;
|
---|
111 | if (linearScalingCalculator.ErrorState != OnlineCalculatorError.None) {
|
---|
112 | alpha = 0.0;
|
---|
113 | beta = 1.0;
|
---|
114 | }
|
---|
115 | scaled = estimatedValues.Select(x => x * beta + alpha).LimitToRange(estimationLimits.Lower, estimationLimits.Upper);
|
---|
116 | } else {
|
---|
117 | scaled = estimatedValues.LimitToRange(estimationLimits.Lower, estimationLimits.Upper);
|
---|
118 | }
|
---|
119 |
|
---|
120 | OnlineCalculatorError error;
|
---|
121 | var r = OnlinePearsonsRCalculator.Calculate(targetValues, scaled, out error);
|
---|
122 | if (error != OnlineCalculatorError.None) r = double.NaN;
|
---|
123 |
|
---|
124 | var r2 = r * r;
|
---|
125 |
|
---|
126 | var variables = ExecutionContext.Scope.Variables;
|
---|
127 |
|
---|
128 | ((DoubleValue)variables["Quality"].Value).Value = r2;
|
---|
129 | //GenealogyGraph.GetByContent(tree).Quality = r2;
|
---|
130 |
|
---|
131 | if (variables.ContainsKey("EstimatedValues")) {
|
---|
132 | variables["EstimatedValues"].Value = new DoubleArray(scaled.ToArray());
|
---|
133 | } else {
|
---|
134 | variables.Add(new Core.Variable("EstimatedValues", new DoubleArray(scaled.ToArray())));
|
---|
135 | }
|
---|
136 | return base.Apply();
|
---|
137 | }
|
---|
138 | }
|
---|
139 | }
|
---|