[12951] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Linq;
|
---|
[12979] | 24 | using System.Threading.Tasks;
|
---|
[12951] | 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 29 | using HeuristicLab.EvolutionTracking;
|
---|
| 30 | using HeuristicLab.Parameters;
|
---|
| 31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 32 | using HeuristicLab.Random;
|
---|
| 33 |
|
---|
[12958] | 34 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
[12951] | 35 | [Item("SchemaEvaluator", "An operator that builds schemas based on the heredity relationship in the genealogy graph.")]
|
---|
| 36 | [StorableClass]
|
---|
| 37 | public class SchemaEvaluator : EvolutionTrackingOperator<ISymbolicExpressionTree> {
|
---|
[12952] | 38 | #region parameter names
|
---|
[12951] | 39 | private const string MinimumSchemaFrequencyParameterName = "MinimumSchemaFrequency";
|
---|
| 40 | private const string MinimumPhenotypicSimilarityParameterName = "MinimumPhenotypicSimilarity";
|
---|
| 41 | private const string ReplacementRatioParameterName = "ReplacementRatio";
|
---|
| 42 | private const string SchemaParameterName = "Schema";
|
---|
| 43 | private const string PopulationSizeParameterName = "PopulationSize";
|
---|
| 44 | private const string RandomParameterName = "Random";
|
---|
| 45 | private const string EvaluatorParameterName = "Evaluator";
|
---|
| 46 | private const string ProblemDataParameterName = "ProblemData";
|
---|
| 47 | private const string InterpreterParameterName = "SymbolicExpressionTreeInterpreter";
|
---|
| 48 | private const string EstimationLimitsParameterName = "EstimationLimits";
|
---|
| 49 | private const string ApplyLinearScalingParameterName = "ApplyLinearScaling";
|
---|
| 50 | private const string MutatorParameterName = "Mutator";
|
---|
| 51 | private const string RandomReplacementParameterName = "RandomReplacement";
|
---|
[12988] | 52 | private const string NumberOfChangedTreesParameterName = "NumberOfChangedTrees";
|
---|
[12979] | 53 | private const string ExecuteInParallelParameterName = "ExecuteInParallel";
|
---|
| 54 | private const string MaxDegreeOfParalellismParameterName = "MaxDegreeOfParallelism";
|
---|
[12988] | 55 | private const string ExclusiveMatchingParameterName = "ExclusiveMatching";
|
---|
[12952] | 56 | #endregion
|
---|
[12951] | 57 |
|
---|
| 58 | #region parameters
|
---|
[12988] | 59 | public ILookupParameter<BoolValue> ExclusiveMatchingParameter {
|
---|
| 60 | get { return (ILookupParameter<BoolValue>)Parameters[ExclusiveMatchingParameterName]; }
|
---|
| 61 | }
|
---|
[12979] | 62 | public ILookupParameter<BoolValue> ExecuteInParallelParameter {
|
---|
| 63 | get { return (ILookupParameter<BoolValue>)Parameters[ExecuteInParallelParameterName]; }
|
---|
| 64 | }
|
---|
| 65 | public ILookupParameter<IntValue> MaxDegreeOfParallelismParameter {
|
---|
| 66 | get { return (ILookupParameter<IntValue>)Parameters[MaxDegreeOfParalellismParameterName]; }
|
---|
| 67 | }
|
---|
[12951] | 68 | public ILookupParameter<ISymbolicDataAnalysisSingleObjectiveEvaluator<IRegressionProblemData>> EvaluatorParameter {
|
---|
| 69 | get { return (ILookupParameter<ISymbolicDataAnalysisSingleObjectiveEvaluator<IRegressionProblemData>>)Parameters[EvaluatorParameterName]; }
|
---|
| 70 | }
|
---|
| 71 | public ILookupParameter<IRegressionProblemData> ProblemDataParameter {
|
---|
| 72 | get { return (ILookupParameter<IRegressionProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
| 73 | }
|
---|
| 74 | public ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter> InterpreterParameter {
|
---|
| 75 | get { return (ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>)Parameters[InterpreterParameterName]; }
|
---|
| 76 | }
|
---|
| 77 | public ILookupParameter<DoubleLimit> EstimationLimitsParameter {
|
---|
| 78 | get { return (ILookupParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
|
---|
| 79 | }
|
---|
| 80 | public ILookupParameter<BoolValue> ApplyLinearScalingParameter {
|
---|
| 81 | get { return (ILookupParameter<BoolValue>)Parameters[ApplyLinearScalingParameterName]; }
|
---|
| 82 | }
|
---|
| 83 | public ILookupParameter<BoolValue> RandomReplacementParameter {
|
---|
| 84 | get { return (ILookupParameter<BoolValue>)Parameters[RandomReplacementParameterName]; }
|
---|
| 85 | }
|
---|
| 86 | public ILookupParameter<ISymbolicExpressionTreeManipulator> MutatorParameter {
|
---|
| 87 | get { return (ILookupParameter<ISymbolicExpressionTreeManipulator>)Parameters[MutatorParameterName]; }
|
---|
| 88 | }
|
---|
| 89 | public ILookupParameter<IRandom> RandomParameter {
|
---|
| 90 | get { return (ILookupParameter<IRandom>)Parameters[RandomParameterName]; }
|
---|
| 91 | }
|
---|
| 92 | public ILookupParameter<IntValue> PopulationSizeParameter {
|
---|
| 93 | get { return (ILookupParameter<IntValue>)Parameters[PopulationSizeParameterName]; }
|
---|
| 94 | }
|
---|
| 95 | public ILookupParameter<ISymbolicExpressionTree> SchemaParameter {
|
---|
| 96 | get { return (ILookupParameter<ISymbolicExpressionTree>)Parameters[SchemaParameterName]; }
|
---|
| 97 | }
|
---|
| 98 | public ILookupParameter<PercentValue> MinimumSchemaFrequencyParameter {
|
---|
| 99 | get { return (ILookupParameter<PercentValue>)Parameters[MinimumSchemaFrequencyParameterName]; }
|
---|
| 100 | }
|
---|
| 101 | public ILookupParameter<PercentValue> ReplacementRatioParameter {
|
---|
| 102 | get { return (ILookupParameter<PercentValue>)Parameters[ReplacementRatioParameterName]; }
|
---|
| 103 | }
|
---|
| 104 | public ILookupParameter<PercentValue> MinimumPhenotypicSimilarityParameter {
|
---|
| 105 | get { return (ILookupParameter<PercentValue>)Parameters[MinimumPhenotypicSimilarityParameterName]; }
|
---|
| 106 | }
|
---|
[12988] | 107 | public LookupParameter<IntValue> NumberOfChangedTreesParameter {
|
---|
| 108 | get { return (LookupParameter<IntValue>)Parameters[NumberOfChangedTreesParameterName]; }
|
---|
[12952] | 109 | }
|
---|
[12951] | 110 | #endregion
|
---|
| 111 |
|
---|
| 112 | #region parameter properties
|
---|
[12979] | 113 | public PercentValue MinimumSchemaFrequency { get { return MinimumSchemaFrequencyParameter.ActualValue; } }
|
---|
| 114 | public PercentValue ReplacementRatio { get { return ReplacementRatioParameter.ActualValue; } }
|
---|
| 115 | public PercentValue MinimumPhenotypicSimilarity { get { return MinimumPhenotypicSimilarityParameter.ActualValue; } }
|
---|
| 116 | public BoolValue RandomReplacement { get { return RandomReplacementParameter.ActualValue; } }
|
---|
[12988] | 117 | public IntValue NumberOfChangedTrees { get { return NumberOfChangedTreesParameter.ActualValue; } }
|
---|
[12951] | 118 | #endregion
|
---|
| 119 |
|
---|
[12952] | 120 | private readonly SymbolicExpressionTreePhenotypicSimilarityCalculator calculator = new SymbolicExpressionTreePhenotypicSimilarityCalculator();
|
---|
| 121 | private readonly QueryMatch qm;
|
---|
| 122 |
|
---|
| 123 | private readonly ISymbolicExpressionTreeNodeEqualityComparer comp = new SymbolicExpressionTreeNodeEqualityComparer {
|
---|
| 124 | MatchConstantValues = false,
|
---|
| 125 | MatchVariableWeights = false,
|
---|
| 126 | MatchVariableNames = true
|
---|
| 127 | };
|
---|
| 128 |
|
---|
[12988] | 129 | public ISymbolicExpressionTree Schema { get; set; }
|
---|
| 130 |
|
---|
[12979] | 131 | [Storable]
|
---|
| 132 | private readonly UpdateEstimatedValuesOperator updateEstimatedValuesOperator;
|
---|
[12952] | 133 |
|
---|
[12951] | 134 | public SchemaEvaluator() {
|
---|
| 135 | qm = new QueryMatch(comp) { MatchParents = true };
|
---|
[12979] | 136 | this.updateEstimatedValuesOperator = new UpdateEstimatedValuesOperator();
|
---|
[12988] | 137 | #region add parameters
|
---|
[12951] | 138 | Parameters.Add(new LookupParameter<ISymbolicExpressionTree>(SchemaParameterName, "The current schema to be evaluated"));
|
---|
| 139 | Parameters.Add(new LookupParameter<PercentValue>(MinimumSchemaFrequencyParameterName));
|
---|
| 140 | Parameters.Add(new LookupParameter<PercentValue>(ReplacementRatioParameterName));
|
---|
| 141 | Parameters.Add(new LookupParameter<PercentValue>(MinimumPhenotypicSimilarityParameterName));
|
---|
| 142 | Parameters.Add(new LookupParameter<ISymbolicExpressionTree>(PopulationSizeParameterName));
|
---|
| 143 | Parameters.Add(new LookupParameter<IRandom>(RandomParameterName));
|
---|
| 144 | Parameters.Add(new LookupParameter<ISymbolicDataAnalysisSingleObjectiveEvaluator<IRegressionProblemData>>(EvaluatorParameterName));
|
---|
| 145 | Parameters.Add(new LookupParameter<IRegressionProblemData>(ProblemDataParameterName));
|
---|
| 146 | Parameters.Add(new LookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>(InterpreterParameterName));
|
---|
| 147 | Parameters.Add(new LookupParameter<DoubleLimit>(EstimationLimitsParameterName));
|
---|
| 148 | Parameters.Add(new LookupParameter<BoolValue>(ApplyLinearScalingParameterName));
|
---|
| 149 | Parameters.Add(new LookupParameter<ISymbolicExpressionTreeManipulator>(MutatorParameterName));
|
---|
| 150 | Parameters.Add(new LookupParameter<BoolValue>(RandomReplacementParameterName));
|
---|
[12988] | 151 | Parameters.Add(new LookupParameter<IntValue>(NumberOfChangedTreesParameterName));
|
---|
[12979] | 152 | Parameters.Add(new LookupParameter<BoolValue>(ExecuteInParallelParameterName));
|
---|
| 153 | Parameters.Add(new LookupParameter<IntValue>(MaxDegreeOfParalellismParameterName));
|
---|
[12988] | 154 | Parameters.Add(new LookupParameter<BoolValue>(ExclusiveMatchingParameterName));
|
---|
| 155 | #endregion
|
---|
[12951] | 156 | }
|
---|
| 157 |
|
---|
[12966] | 158 | [StorableConstructor]
|
---|
| 159 | protected SchemaEvaluator(bool deserializing) : base(deserializing) { }
|
---|
| 160 |
|
---|
[12951] | 161 | protected SchemaEvaluator(SchemaEvaluator original, Cloner cloner) : base(original, cloner) {
|
---|
[12979] | 162 | this.comp = original.comp == null ? new SymbolicExpressionTreeNodeEqualityComparer {
|
---|
| 163 | MatchConstantValues = false,
|
---|
| 164 | MatchVariableWeights = false,
|
---|
| 165 | MatchVariableNames = true
|
---|
| 166 | } : (ISymbolicExpressionTreeNodeEqualityComparer)original.comp.Clone();
|
---|
| 167 | this.qm = new QueryMatch(comp) { MatchParents = original.qm?.MatchParents ?? true };
|
---|
| 168 | this.updateEstimatedValuesOperator = new UpdateEstimatedValuesOperator();
|
---|
[12951] | 169 | }
|
---|
| 170 |
|
---|
| 171 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 172 | return new SchemaEvaluator(this, cloner);
|
---|
| 173 | }
|
---|
| 174 |
|
---|
| 175 | public override IOperation Apply() {
|
---|
| 176 | var individuals = ExecutionContext.Scope.SubScopes; // the scopes represent the individuals
|
---|
| 177 |
|
---|
| 178 | var random = RandomParameter.ActualValue;
|
---|
| 179 | var mutator = MutatorParameter.ActualValue;
|
---|
| 180 |
|
---|
[12988] | 181 | var s = Schema;
|
---|
[12979] | 182 | var sRoot = s.Root.GetSubtree(0).GetSubtree(0);
|
---|
| 183 | int countThreshold = (int)Math.Max(2, Math.Round(MinimumSchemaFrequency.Value * individuals.Count));
|
---|
| 184 |
|
---|
| 185 | // first apply the length and root equality checks in order to filter the individuals
|
---|
[12988] | 186 | var exclusiveMatching = ExclusiveMatchingParameter.ActualValue.Value;
|
---|
| 187 | var filtered = exclusiveMatching ? (from ind in individuals
|
---|
| 188 | where !ind.Variables.ContainsKey("AlreadyMatched")
|
---|
| 189 | let t = (ISymbolicExpressionTree)ind.Variables["SymbolicExpressionTree"].Value
|
---|
| 190 | where t.Length >= s.Length && qm.Comparer.Equals(t.Root.GetSubtree(0).GetSubtree(0), sRoot)
|
---|
| 191 | select ind).ToList()
|
---|
| 192 | : (from ind in individuals
|
---|
| 193 | let t = (ISymbolicExpressionTree)ind.Variables["SymbolicExpressionTree"].Value
|
---|
| 194 | where t.Length >= s.Length && qm.Comparer.Equals(t.Root.GetSubtree(0).GetSubtree(0), sRoot)
|
---|
| 195 | select ind).ToList();
|
---|
[12979] | 196 |
|
---|
| 197 | // if we don't have enough filtered individuals, then we are done
|
---|
| 198 | if (filtered.Count < countThreshold) {
|
---|
| 199 | return base.Apply();
|
---|
| 200 | }
|
---|
| 201 |
|
---|
| 202 | // check if the filtered individuals match the schema
|
---|
| 203 | var sNodes = QueryMatch.InitializePostOrder(sRoot);
|
---|
[12958] | 204 | var matchingIndividuals = new ScopeList();
|
---|
[12979] | 205 | bool executeInParallel = ExecuteInParallelParameter.ActualValue.Value;
|
---|
| 206 | int maxDegreeOfParallelism = MaxDegreeOfParallelismParameter.ActualValue.Value;
|
---|
| 207 |
|
---|
| 208 | if (executeInParallel) {
|
---|
| 209 | var matching = new bool[filtered.Count];
|
---|
| 210 |
|
---|
| 211 | Parallel.For(0, filtered.Count, new ParallelOptions { MaxDegreeOfParallelism = maxDegreeOfParallelism },
|
---|
| 212 | i => {
|
---|
| 213 | var t = (ISymbolicExpressionTree)filtered[i].Variables["SymbolicExpressionTree"].Value;
|
---|
| 214 | var tNodes = QueryMatch.InitializePostOrder(t.Root.GetSubtree(0).GetSubtree(0));
|
---|
| 215 | if (qm.Match(tNodes, sNodes)) {
|
---|
| 216 | matching[i] = true;
|
---|
| 217 | }
|
---|
| 218 | });
|
---|
| 219 |
|
---|
| 220 | for (int i = 0; i < matching.Length; ++i) {
|
---|
| 221 | if (matching[i])
|
---|
| 222 | matchingIndividuals.Add(filtered[i]);
|
---|
| 223 | }
|
---|
| 224 | } else {
|
---|
| 225 | for (int i = 0; i < filtered.Count; ++i) {
|
---|
| 226 | // break early if it becomes impossible to reach the minimum threshold
|
---|
| 227 | if (matchingIndividuals.Count + filtered.Count - i < countThreshold)
|
---|
| 228 | break;
|
---|
| 229 |
|
---|
| 230 | var ind = filtered[i];
|
---|
| 231 | var t = (ISymbolicExpressionTree)ind.Variables["SymbolicExpressionTree"].Value;
|
---|
| 232 | var tNodes = QueryMatch.InitializePostOrder(t.Root.GetSubtree(0).GetSubtree(0));
|
---|
| 233 | if (qm.Match(tNodes, sNodes))
|
---|
| 234 | matchingIndividuals.Add(ind);
|
---|
| 235 | }
|
---|
[12958] | 236 | }
|
---|
[12951] | 237 |
|
---|
[12988] | 238 | // additional condition: the average schema quality should be equal or greater than the population average quality
|
---|
[12979] | 239 | if (matchingIndividuals.Count < countThreshold) {
|
---|
[12951] | 240 | return base.Apply();
|
---|
[12952] | 241 | }
|
---|
[12951] | 242 |
|
---|
[12979] | 243 | var similarity = CalculatePhenotypicSimilarity(matchingIndividuals, calculator, executeInParallel, maxDegreeOfParallelism);
|
---|
[12952] | 244 | if (similarity < MinimumPhenotypicSimilarity.Value) {
|
---|
[12951] | 245 | return base.Apply();
|
---|
[12952] | 246 | }
|
---|
[12951] | 247 |
|
---|
[12970] | 248 | int n = (int)Math.Floor(matchingIndividuals.Count * ReplacementRatio.Value);
|
---|
[12952] | 249 | var individualsToReplace = RandomReplacement.Value ? matchingIndividuals.SampleRandomWithoutRepetition(random, n).ToList()
|
---|
| 250 | : matchingIndividuals.OrderBy(x => (DoubleValue)x.Variables["Quality"].Value).Take(n).ToList();
|
---|
[12979] | 251 | var mutationOc = new OperationCollection { Parallel = false }; // cannot be parallel due to the before/after operators which insert vertices in the genealogy graph
|
---|
| 252 | var updateEstimatedValues = new OperationCollection { Parallel = true }; // evaluation should be done in parallel when possible
|
---|
[12951] | 253 | foreach (var ind in individualsToReplace) {
|
---|
| 254 | var mutatorOp = ExecutionContext.CreateChildOperation(mutator, ind);
|
---|
[12979] | 255 | var updateOp = ExecutionContext.CreateChildOperation(updateEstimatedValuesOperator, ind);
|
---|
| 256 | mutationOc.Add(mutatorOp);
|
---|
| 257 | updateEstimatedValues.Add(updateOp);
|
---|
[12988] | 258 | if (exclusiveMatching)
|
---|
| 259 | ind.Variables.Add(new Core.Variable("AlreadyMatched"));
|
---|
[12951] | 260 | }
|
---|
[12988] | 261 |
|
---|
| 262 | NumberOfChangedTrees.Value += individualsToReplace.Count; // a lock is not necessary here because the SchemaEvaluators cannot be executed in parallel
|
---|
| 263 |
|
---|
[12979] | 264 | return new OperationCollection(mutationOc, updateEstimatedValues, base.Apply());
|
---|
[12951] | 265 | }
|
---|
[12979] | 266 |
|
---|
| 267 | private static double CalculatePhenotypicSimilarity(ScopeList individuals, SymbolicExpressionTreePhenotypicSimilarityCalculator calculator, bool parallel = false, int nThreads = -1) {
|
---|
| 268 | double similarity = 0;
|
---|
| 269 | int count = individuals.Count;
|
---|
| 270 | if (parallel) {
|
---|
| 271 | var parallelOptions = new ParallelOptions { MaxDegreeOfParallelism = nThreads };
|
---|
| 272 | var simArray = new double[count - 1];
|
---|
| 273 | Parallel.For(0, count - 1, parallelOptions, i => {
|
---|
| 274 | double innerSim = 0;
|
---|
| 275 | for (int j = i + 1; j < count; ++j) {
|
---|
| 276 | innerSim += calculator.CalculateSolutionSimilarity(individuals[i], individuals[j]);
|
---|
| 277 | }
|
---|
| 278 | simArray[i] = innerSim;
|
---|
| 279 | });
|
---|
| 280 | similarity = simArray.Sum();
|
---|
| 281 | } else {
|
---|
| 282 | for (int i = 0; i < count - 1; ++i) {
|
---|
| 283 | for (int j = i + 1; j < count; ++j) {
|
---|
| 284 | similarity += calculator.CalculateSolutionSimilarity(individuals[i], individuals[j]);
|
---|
| 285 | }
|
---|
| 286 | }
|
---|
| 287 | }
|
---|
| 288 | return similarity / (count * (count - 1) / 2.0);
|
---|
| 289 | }
|
---|
[12951] | 290 | }
|
---|
| 291 | }
|
---|