1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Threading.Tasks;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Data;
|
---|
29 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
30 | using HeuristicLab.EvolutionTracking;
|
---|
31 | using HeuristicLab.Optimization;
|
---|
32 | using HeuristicLab.Parameters;
|
---|
33 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
34 |
|
---|
35 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
36 | [Item("SymbolicDataAnalysisSchemaFrequencyAnalyzer", "An analyzer which counts schema frequencies in the population.")]
|
---|
37 | [StorableClass]
|
---|
38 | public class SymbolicDataAnalysisSchemaFrequencyAnalyzer : EvolutionTrackingAnalyzer<ISymbolicExpressionTree> {
|
---|
39 | private const string MinimumSchemaLengthParameterName = "MinimumSchemaLength";
|
---|
40 | private const string StrictSchemaMatchingParameterName = "StrictSchemaMatching";
|
---|
41 | private const string ProblemDataParameterName = "ProblemData";
|
---|
42 | private const string InterpreterParameterName = "SymbolicExpressionTreeInterpreter";
|
---|
43 | private const string ExecuteInParallelParameterName = "ExecuteInParallel";
|
---|
44 | private const string MaximumDegreeOfParallelismParameterName = "MaximumDegreeOfParallelism";
|
---|
45 |
|
---|
46 | private static readonly Dictionary<string, string> ShortNames = new Dictionary<string, string> {
|
---|
47 | { "Addition", "+" },
|
---|
48 | { "Subtraction", "-" },
|
---|
49 | { "Multiplication", "*" },
|
---|
50 | { "Division", "/" },
|
---|
51 | { "Exponential", "exp" },
|
---|
52 | { "Logarithm", "log" }
|
---|
53 | };
|
---|
54 |
|
---|
55 | [Storable]
|
---|
56 | private readonly SymbolicExpressionTreePhenotypicSimilarityCalculator phenotypicSimilarityCalculator;
|
---|
57 |
|
---|
58 | [Storable]
|
---|
59 | private readonly SymbolicExpressionTreeBottomUpSimilarityCalculator genotypicSimilarityCalculator;
|
---|
60 |
|
---|
61 | [Storable]
|
---|
62 | private readonly ISymbolicExpressionTreeNodeEqualityComparer comparer;
|
---|
63 | private QueryMatch qm;
|
---|
64 |
|
---|
65 | public IFixedValueParameter<BoolValue> ExecuteInParallelParameter {
|
---|
66 | get { return (IFixedValueParameter<BoolValue>)Parameters[ExecuteInParallelParameterName]; }
|
---|
67 | }
|
---|
68 |
|
---|
69 | public IFixedValueParameter<IntValue> MaximumDegreeOfParallelismParameter {
|
---|
70 | get { return (IFixedValueParameter<IntValue>)Parameters[MaximumDegreeOfParallelismParameterName]; }
|
---|
71 | }
|
---|
72 |
|
---|
73 | public IFixedValueParameter<IntValue> MinimumSchemaLengthParameter {
|
---|
74 | get { return (IFixedValueParameter<IntValue>)Parameters[MinimumSchemaLengthParameterName]; }
|
---|
75 | }
|
---|
76 |
|
---|
77 | public IFixedValueParameter<BoolValue> StrictSchemaMatchingParameter {
|
---|
78 | get { return (IFixedValueParameter<BoolValue>)Parameters[StrictSchemaMatchingParameterName]; }
|
---|
79 | }
|
---|
80 |
|
---|
81 | public ILookupParameter<IRegressionProblemData> ProblemDataParameter {
|
---|
82 | get { return (ILookupParameter<IRegressionProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
83 | }
|
---|
84 |
|
---|
85 | public ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter> InterpreterParameter {
|
---|
86 | get { return (ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>)Parameters[InterpreterParameterName]; }
|
---|
87 | }
|
---|
88 |
|
---|
89 | public bool ExecuteInParallel {
|
---|
90 | get { return ExecuteInParallelParameter.Value.Value; }
|
---|
91 | set { ExecuteInParallelParameter.Value.Value = value; }
|
---|
92 | }
|
---|
93 |
|
---|
94 | public int MaximumDegreeOfParallelism {
|
---|
95 | get { return MaximumDegreeOfParallelismParameter.Value.Value; }
|
---|
96 | set { MaximumDegreeOfParallelismParameter.Value.Value = value; }
|
---|
97 | }
|
---|
98 |
|
---|
99 | public int MinimumSchemaLength {
|
---|
100 | get { return MinimumSchemaLengthParameter.Value.Value; }
|
---|
101 | set { MinimumSchemaLengthParameter.Value.Value = value; }
|
---|
102 | }
|
---|
103 |
|
---|
104 | public bool StrictSchemaMatching {
|
---|
105 | get { return StrictSchemaMatchingParameter.Value.Value; }
|
---|
106 | set { StrictSchemaMatchingParameter.Value.Value = value; }
|
---|
107 | }
|
---|
108 |
|
---|
109 | public SymbolicDataAnalysisSchemaFrequencyAnalyzer() {
|
---|
110 | comparer = new SymbolicExpressionTreeNodeEqualityComparer {
|
---|
111 | MatchConstantValues = false,
|
---|
112 | MatchVariableNames = true,
|
---|
113 | MatchVariableWeights = false
|
---|
114 | };
|
---|
115 | qm = new QueryMatch(comparer) { MatchParents = true };
|
---|
116 | phenotypicSimilarityCalculator = new SymbolicExpressionTreePhenotypicSimilarityCalculator();
|
---|
117 | genotypicSimilarityCalculator = new SymbolicExpressionTreeBottomUpSimilarityCalculator { SolutionVariableName = "SymbolicExpressionTree" };
|
---|
118 | Parameters.Add(new FixedValueParameter<IntValue>(MinimumSchemaLengthParameterName, new IntValue(10)));
|
---|
119 | Parameters.Add(new FixedValueParameter<IntValue>(MaximumDegreeOfParallelismParameterName, new IntValue(4)));
|
---|
120 | Parameters.Add(new FixedValueParameter<BoolValue>(StrictSchemaMatchingParameterName, new BoolValue(true)));
|
---|
121 | Parameters.Add(new FixedValueParameter<BoolValue>(ExecuteInParallelParameterName, new BoolValue(true)));
|
---|
122 | Parameters.Add(new LookupParameter<IRegressionProblemData>(ProblemDataParameterName));
|
---|
123 | Parameters.Add(new LookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>(InterpreterParameterName));
|
---|
124 | }
|
---|
125 |
|
---|
126 | protected SymbolicDataAnalysisSchemaFrequencyAnalyzer(SymbolicDataAnalysisSchemaFrequencyAnalyzer original,
|
---|
127 | Cloner cloner) : base(original, cloner) {
|
---|
128 | comparer = cloner.Clone(original.comparer);
|
---|
129 | phenotypicSimilarityCalculator = cloner.Clone(original.phenotypicSimilarityCalculator);
|
---|
130 | genotypicSimilarityCalculator = cloner.Clone(original.genotypicSimilarityCalculator);
|
---|
131 | MinimumSchemaLength = original.MinimumSchemaLength;
|
---|
132 | StrictSchemaMatching = original.StrictSchemaMatching;
|
---|
133 | qm = new QueryMatch(comparer) { MatchParents = true };
|
---|
134 | }
|
---|
135 |
|
---|
136 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
137 | return new SymbolicDataAnalysisSchemaFrequencyAnalyzer(this, cloner);
|
---|
138 | }
|
---|
139 |
|
---|
140 | [StorableConstructor]
|
---|
141 | protected SymbolicDataAnalysisSchemaFrequencyAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
142 |
|
---|
143 | [StorableHook(HookType.AfterDeserialization)]
|
---|
144 | private void AfterDeserialization() {
|
---|
145 | qm = new QueryMatch(comparer) { MatchParents = true };
|
---|
146 | }
|
---|
147 |
|
---|
148 | public override IOperation Apply() {
|
---|
149 | if (PopulationGraph == null || Generation.Value == 0 ||
|
---|
150 | (Generation.Value > 1 && Generation.Value % UpdateInterval.Value != 0))
|
---|
151 | return base.Apply();
|
---|
152 |
|
---|
153 | comparer.MatchVariableWeights = comparer.MatchConstantValues = StrictSchemaMatching;
|
---|
154 | phenotypicSimilarityCalculator.Interpreter = InterpreterParameter.ActualValue;
|
---|
155 | phenotypicSimilarityCalculator.ProblemData = ProblemDataParameter.ActualValue;
|
---|
156 | var generation = Generation.Value;
|
---|
157 |
|
---|
158 | // use all offspring produced by crossover (including those in the intermediate rank)
|
---|
159 | var vertices = PopulationGraph.Vertices.Where(x => x.InDegree == 2 && x.Rank > generation - 1).OrderByDescending(x => x.Quality).ToList();
|
---|
160 |
|
---|
161 | ResultCollection resultCollection;
|
---|
162 | if (Results.ContainsKey("Schema Frequencies")) {
|
---|
163 | resultCollection = (ResultCollection)Results["Schema Frequencies"].Value;
|
---|
164 | } else {
|
---|
165 | resultCollection = new ResultCollection();
|
---|
166 | var result = new Result("Schema Frequencies", resultCollection);
|
---|
167 | Results.Add(result);
|
---|
168 | }
|
---|
169 |
|
---|
170 | var mostFrequentPerGeneration = new List<Tuple<string, double[]>>();
|
---|
171 |
|
---|
172 | // match the obtained schemas against the whole population
|
---|
173 | var population = PopulationGraph.Vertices.Where(x => x.Rank.IsAlmost(generation)).ToList();
|
---|
174 | var trees = population.Select(x => x.Data).ToList();
|
---|
175 | var qualities = population.Select(x => x.Quality).ToList();
|
---|
176 | // cache similarity measures to speed up calculations
|
---|
177 | var genSimMatrix = new double[trees.Count, trees.Count];
|
---|
178 | var phenSimMatrix = new double[trees.Count, trees.Count];
|
---|
179 |
|
---|
180 | for (int i = 0; i < trees.Count - 1; ++i) {
|
---|
181 | for (int j = i + 1; j < trees.Count; ++j) {
|
---|
182 | genSimMatrix[i, j] = double.NaN;
|
---|
183 | phenSimMatrix[i, j] = double.NaN;
|
---|
184 | }
|
---|
185 | }
|
---|
186 |
|
---|
187 | var schemas = SchemaCreator.GenerateCombinedSchemas(vertices, MinimumSchemaLength, 0, StrictSchemaMatching).ToList();
|
---|
188 | var schemaStrings = schemas.Select(x => x.Root.GetSubtree(0).GetSubtree(0).FormatToString(StrictSchemaMatching)).ToList();
|
---|
189 | int[][] matchingIndices;
|
---|
190 | if (ExecuteInParallel) {
|
---|
191 | matchingIndices = new int[schemas.Count][];
|
---|
192 | Parallel.For(0, schemas.Count, new ParallelOptions { MaxDegreeOfParallelism = MaximumDegreeOfParallelism }, i => {
|
---|
193 | var schema = schemas[i];
|
---|
194 | matchingIndices[i] = Enumerable.Range(0, trees.Count).Where(v => qm.Match(trees[v], schema)).ToArray();
|
---|
195 | });
|
---|
196 | } else {
|
---|
197 | matchingIndices = schemas.Select(x => Enumerable.Range(0, trees.Count).Where(v => qm.Match(trees[v], x)).ToArray()).ToArray();
|
---|
198 | }
|
---|
199 |
|
---|
200 | var schemaStatistics = new List<Tuple<string, double[]>>();
|
---|
201 | var avgPopQuality = qualities.Average();
|
---|
202 |
|
---|
203 | if (ExecuteInParallel) {
|
---|
204 | var locker = new object();
|
---|
205 | Parallel.For(0, schemas.Count, new ParallelOptions { MaxDegreeOfParallelism = MaximumDegreeOfParallelism }, i => {
|
---|
206 | var indices = matchingIndices[i];
|
---|
207 | if (indices.Length > 1) {
|
---|
208 | var avgSchemaQuality = indices.Average(x => qualities[x]);
|
---|
209 | var avgLength = indices.Average(x => trees[x].Length);
|
---|
210 | var avgGenSim = AverageSimilarity(indices, trees, genSimMatrix, genotypicSimilarityCalculator.CalculateSimilarity);
|
---|
211 | var avgPhenSim = AverageSimilarity(indices, trees, phenSimMatrix, phenotypicSimilarityCalculator.CalculateSimilarity);
|
---|
212 | var array = new[] { indices.Length, avgSchemaQuality, avgLength, avgGenSim, avgPhenSim, avgPopQuality };
|
---|
213 | var t = new Tuple<string, double[]>(schemaStrings[i], array);
|
---|
214 | lock (locker) {
|
---|
215 | schemaStatistics.Add(t);
|
---|
216 | }
|
---|
217 | }
|
---|
218 | });
|
---|
219 | } else {
|
---|
220 | for (int i = 0; i < schemas.Count; ++i) {
|
---|
221 | var indices = matchingIndices[i];
|
---|
222 | if (indices.Length > 1) {
|
---|
223 | var avgSchemaQuality = indices.Average(x => qualities[x]);
|
---|
224 | var avgLength = indices.Average(x => trees[x].Length);
|
---|
225 | var avgGenSim = AverageSimilarity(indices, trees, genSimMatrix, genotypicSimilarityCalculator.CalculateSimilarity);
|
---|
226 | var avgPhenSim = AverageSimilarity(indices, trees, phenSimMatrix, phenotypicSimilarityCalculator.CalculateSimilarity);
|
---|
227 | var array = new[] { indices.Length, avgSchemaQuality, avgLength, avgGenSim, avgPhenSim, avgPopQuality };
|
---|
228 | var t = new Tuple<string, double[]>(schemaStrings[i], array);
|
---|
229 | schemaStatistics.Add(t);
|
---|
230 | }
|
---|
231 | }
|
---|
232 | }
|
---|
233 |
|
---|
234 | if (!schemaStatistics.Any()) return base.Apply(); // shouldn't ever happen
|
---|
235 | var columnNames = new[] { "Count", "Avg Quality", "Avg Length", "Avg Genotype Similarity", "Avg Phenotype Similarity", "Avg Population Quality" };
|
---|
236 | var mostFrequent = new DoubleMatrix(schemaStatistics.Count, schemaStatistics[0].Item2.Length) {
|
---|
237 | SortableView = true
|
---|
238 | };
|
---|
239 | schemaStatistics.Sort((a, b) => { if (a.Item2[0].Equals(b.Item2[0])) return b.Item2[1].CompareTo(a.Item2[1]); return b.Item2[0].CompareTo(a.Item2[0]); });
|
---|
240 | mostFrequentPerGeneration.Add(Tuple.Create(schemaStatistics[0].Item1, new[] { (double)generation }.Concat(schemaStatistics[0].Item2).ToArray()));
|
---|
241 | mostFrequent.RowNames = schemaStatistics.Select(x => x.Item1);
|
---|
242 | mostFrequent.ColumnNames = columnNames;
|
---|
243 | for (int i = 0; i < schemaStatistics.Count; ++i) {
|
---|
244 | var values = schemaStatistics[i].Item2;
|
---|
245 | for (int j = 0; j < values.Length; ++j) {
|
---|
246 | mostFrequent[i, j] = values[j];
|
---|
247 | }
|
---|
248 | }
|
---|
249 | resultCollection.Add(new Result("Generation " + generation + " Most Frequent Schemas", mostFrequent));
|
---|
250 |
|
---|
251 | columnNames = new[] { "Generation", "Count", "Avg Quality", "Avg Length", "Avg Genotype Similarity", "Avg Phenotype Similarity", "Avg Population Quality" };
|
---|
252 | // sort according to quality, then count
|
---|
253 | schemaStatistics.Sort((a, b) => { if (a.Item2[1].Equals(b.Item2[1])) return b.Item2[0].CompareTo(a.Item2[0]); return b.Item2[1].CompareTo(a.Item2[1]); });
|
---|
254 | DoubleMatrix bestSchemasMatrix;
|
---|
255 | if (!resultCollection.ContainsKey("Best Schemas")) {
|
---|
256 | bestSchemasMatrix = new DoubleMatrix(1, 7);
|
---|
257 | bestSchemasMatrix.RowNames = new[] { schemaStatistics[0].Item1 };
|
---|
258 | bestSchemasMatrix.ColumnNames = columnNames;
|
---|
259 | var values = new[] { (double)generation }.Concat(schemaStatistics[0].Item2).ToArray();
|
---|
260 | for (int i = 0; i < values.Length; ++i)
|
---|
261 | bestSchemasMatrix[0, i] = values[i];
|
---|
262 | resultCollection.Add(new Result("Best Schemas", bestSchemasMatrix));
|
---|
263 | } else {
|
---|
264 | bestSchemasMatrix = (DoubleMatrix)resultCollection["Best Schemas"].Value;
|
---|
265 | resultCollection["Best Schemas"].Value = AddRow(bestSchemasMatrix, new[] { (double)generation }.Concat(schemaStatistics[0].Item2).ToArray(), schemaStatistics[0].Item1);
|
---|
266 | }
|
---|
267 |
|
---|
268 | // sort according to count, then quality
|
---|
269 | schemaStatistics.Sort((a, b) => { if (a.Item2[0].Equals(b.Item2[0])) return b.Item2[1].CompareTo(a.Item2[1]); return b.Item2[0].CompareTo(a.Item2[0]); });
|
---|
270 | DoubleMatrix frequentSchemasMatrix;
|
---|
271 | if (!resultCollection.ContainsKey("Most Frequent Schemas")) {
|
---|
272 | frequentSchemasMatrix = new DoubleMatrix(1, 7);
|
---|
273 | frequentSchemasMatrix.RowNames = new[] { schemaStatistics[0].Item1 };
|
---|
274 | frequentSchemasMatrix.ColumnNames = columnNames;
|
---|
275 | var values = new[] { (double)generation }.Concat(schemaStatistics[0].Item2).ToArray();
|
---|
276 | for (int i = 0; i < values.Length; ++i)
|
---|
277 | frequentSchemasMatrix[0, i] = values[i];
|
---|
278 | resultCollection.Add(new Result("Most Frequent Schemas", frequentSchemasMatrix));
|
---|
279 | } else {
|
---|
280 | frequentSchemasMatrix = (DoubleMatrix)resultCollection["Most Frequent Schemas"].Value;
|
---|
281 | resultCollection["Most Frequent Schemas"].Value = AddRow(frequentSchemasMatrix, new[] { (double)generation }.Concat(schemaStatistics[0].Item2).ToArray(), schemaStatistics[0].Item1);
|
---|
282 | }
|
---|
283 | return base.Apply();
|
---|
284 | }
|
---|
285 |
|
---|
286 | private static DoubleMatrix AddRow(DoubleMatrix m, double[] row, string rowName) {
|
---|
287 | if (row.Length != m.Columns)
|
---|
288 | throw new Exception("Row value count must match matrix column count.");
|
---|
289 | var x = new DoubleMatrix(m.Rows + 1, m.Columns);
|
---|
290 | x.RowNames = m.RowNames.Concat(new[] { rowName });
|
---|
291 | x.ColumnNames = m.ColumnNames;
|
---|
292 | for (int i = 0; i < m.Rows; ++i)
|
---|
293 | for (int j = 0; j < m.Columns; ++j)
|
---|
294 | x[i, j] = m[i, j];
|
---|
295 | for (int j = 0; j < m.Columns; ++j)
|
---|
296 | x[m.Rows, j] = row[j];
|
---|
297 | return x;
|
---|
298 | }
|
---|
299 |
|
---|
300 | private static double AverageSimilarity(int[] indices, List<ISymbolicExpressionTree> trees, double[,] similarityMatrix, Func<ISymbolicExpressionTree, ISymbolicExpressionTree, double> similarityFunction) {
|
---|
301 | var agg = 0d;
|
---|
302 | int len = indices.Length;
|
---|
303 | var count = len * (len - 1) / 2d;
|
---|
304 | for (int i = 0; i < indices.Length - 1; ++i) {
|
---|
305 | var a = indices[i];
|
---|
306 | for (int j = i + 1; j < indices.Length; ++j) {
|
---|
307 | var b = indices[j];
|
---|
308 | if (double.IsNaN(similarityMatrix[a, b]))
|
---|
309 | similarityMatrix[a, b] = similarityFunction(trees[a], trees[b]);
|
---|
310 | agg += similarityMatrix[a, b];
|
---|
311 | }
|
---|
312 | }
|
---|
313 | return agg / count;
|
---|
314 | }
|
---|
315 | }
|
---|
316 | }
|
---|