[8409] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[14312] | 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[8409] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
[14878] | 23 | using System.Linq;
|
---|
[8409] | 24 | using HeuristicLab.Common;
|
---|
[10459] | 25 | using HeuristicLab.Core;
|
---|
[8409] | 26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
[10459] | 27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
[8409] | 28 |
|
---|
| 29 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
[10459] | 30 | [StorableClass]
|
---|
| 31 | [Item("SymbolicDataAnalysisSolutionImpactValuesCalculator", "Calculates the impact values and replacements values for symbolic expression tree nodes.")]
|
---|
| 32 | public abstract class SymbolicDataAnalysisSolutionImpactValuesCalculator : Item, ISymbolicDataAnalysisSolutionImpactValuesCalculator {
|
---|
| 33 | protected SymbolicDataAnalysisSolutionImpactValuesCalculator() { }
|
---|
| 34 |
|
---|
| 35 | protected SymbolicDataAnalysisSolutionImpactValuesCalculator(SymbolicDataAnalysisSolutionImpactValuesCalculator original, Cloner cloner)
|
---|
| 36 | : base(original, cloner) { }
|
---|
| 37 | [StorableConstructor]
|
---|
| 38 | protected SymbolicDataAnalysisSolutionImpactValuesCalculator(bool deserializing) : base(deserializing) { }
|
---|
[12891] | 39 | public abstract void CalculateImpactAndReplacementValues(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable<int> rows, out double impactValue, out double replacementValue, out double newQualityForImpactsCalculation, double qualityForImpactsCalculation = double.NaN);
|
---|
[8409] | 40 |
|
---|
[14878] | 41 | protected IEnumerable<double> CalculateReplacementValues(ISymbolicExpressionTreeNode node, ISymbolicExpressionTree sourceTree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
|
---|
[12891] | 42 | IDataset dataset, IEnumerable<int> rows) {
|
---|
[8946] | 43 | //optimization: constant nodes return always the same value
|
---|
| 44 | ConstantTreeNode constantNode = node as ConstantTreeNode;
|
---|
[14878] | 45 | BinaryFactorVariableTreeNode binaryFactorNode = node as BinaryFactorVariableTreeNode;
|
---|
| 46 | FactorVariableTreeNode factorNode = node as FactorVariableTreeNode;
|
---|
| 47 | if (constantNode != null) {
|
---|
| 48 | yield return constantNode.Value;
|
---|
| 49 | } else if (binaryFactorNode != null) {
|
---|
| 50 | // valid replacements are either all off or all on
|
---|
| 51 | yield return 0;
|
---|
| 52 | yield return 1;
|
---|
| 53 | } else if (factorNode != null) {
|
---|
| 54 | foreach (var w in factorNode.Weights) yield return w;
|
---|
| 55 | yield return 0.0;
|
---|
| 56 | } else {
|
---|
| 57 | var rootSymbol = new ProgramRootSymbol().CreateTreeNode();
|
---|
| 58 | var startSymbol = new StartSymbol().CreateTreeNode();
|
---|
| 59 | rootSymbol.AddSubtree(startSymbol);
|
---|
| 60 | startSymbol.AddSubtree((ISymbolicExpressionTreeNode)node.Clone());
|
---|
[8409] | 61 |
|
---|
[14878] | 62 | var tempTree = new SymbolicExpressionTree(rootSymbol);
|
---|
| 63 | // clone ADFs of source tree
|
---|
| 64 | for (int i = 1; i < sourceTree.Root.SubtreeCount; i++) {
|
---|
| 65 | tempTree.Root.AddSubtree((ISymbolicExpressionTreeNode)sourceTree.Root.GetSubtree(i).Clone());
|
---|
| 66 | }
|
---|
| 67 | yield return interpreter.GetSymbolicExpressionTreeValues(tempTree, dataset, rows).Median();
|
---|
| 68 | yield return interpreter.GetSymbolicExpressionTreeValues(tempTree, dataset, rows).Average(); // TODO perf
|
---|
[8946] | 69 | }
|
---|
[8409] | 70 | }
|
---|
[10459] | 71 |
|
---|
| 72 |
|
---|
[8409] | 73 | }
|
---|
| 74 | }
|
---|