1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
29 | using HeuristicLab.Parameters;
|
---|
30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
33 | [StorableClass]
|
---|
34 | [Item("SymbolicDataAnalysisExpressionTreeLinearInterpreter", "Fast linear (non-recursive) interpreter for symbolic expression trees. Does not support ADFs.")]
|
---|
35 | public sealed class SymbolicDataAnalysisExpressionTreeLinearInterpreter : ParameterizedNamedItem, ISymbolicDataAnalysisExpressionTreeInterpreter {
|
---|
36 | private const string CheckExpressionsWithIntervalArithmeticParameterName = "CheckExpressionsWithIntervalArithmetic";
|
---|
37 | private const string CheckExpressionsWithIntervalArithmeticParameterDescription = "Switch that determines if the interpreter checks the validity of expressions with interval arithmetic before evaluating the expression.";
|
---|
38 | private const string EvaluatedSolutionsParameterName = "EvaluatedSolutions";
|
---|
39 |
|
---|
40 | private readonly SymbolicDataAnalysisExpressionTreeInterpreter interpreter;
|
---|
41 |
|
---|
42 | public override bool CanChangeName {
|
---|
43 | get { return false; }
|
---|
44 | }
|
---|
45 |
|
---|
46 | public override bool CanChangeDescription {
|
---|
47 | get { return false; }
|
---|
48 | }
|
---|
49 |
|
---|
50 | #region parameter properties
|
---|
51 | public IFixedValueParameter<BoolValue> CheckExpressionsWithIntervalArithmeticParameter {
|
---|
52 | get { return (IFixedValueParameter<BoolValue>)Parameters[CheckExpressionsWithIntervalArithmeticParameterName]; }
|
---|
53 | }
|
---|
54 |
|
---|
55 | public IFixedValueParameter<IntValue> EvaluatedSolutionsParameter {
|
---|
56 | get { return (IFixedValueParameter<IntValue>)Parameters[EvaluatedSolutionsParameterName]; }
|
---|
57 | }
|
---|
58 | #endregion
|
---|
59 |
|
---|
60 | #region properties
|
---|
61 | public bool CheckExpressionsWithIntervalArithmetic {
|
---|
62 | get { return CheckExpressionsWithIntervalArithmeticParameter.Value.Value; }
|
---|
63 | set { CheckExpressionsWithIntervalArithmeticParameter.Value.Value = value; }
|
---|
64 | }
|
---|
65 | public int EvaluatedSolutions {
|
---|
66 | get { return EvaluatedSolutionsParameter.Value.Value; }
|
---|
67 | set { EvaluatedSolutionsParameter.Value.Value = value; }
|
---|
68 | }
|
---|
69 | #endregion
|
---|
70 |
|
---|
71 | [StorableConstructor]
|
---|
72 | private SymbolicDataAnalysisExpressionTreeLinearInterpreter(bool deserializing)
|
---|
73 | : base(deserializing) {
|
---|
74 | interpreter = new SymbolicDataAnalysisExpressionTreeInterpreter();
|
---|
75 | }
|
---|
76 |
|
---|
77 | private SymbolicDataAnalysisExpressionTreeLinearInterpreter(SymbolicDataAnalysisExpressionTreeLinearInterpreter original, Cloner cloner)
|
---|
78 | : base(original, cloner) {
|
---|
79 | interpreter = cloner.Clone(original.interpreter);
|
---|
80 | }
|
---|
81 |
|
---|
82 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
83 | return new SymbolicDataAnalysisExpressionTreeLinearInterpreter(this, cloner);
|
---|
84 | }
|
---|
85 |
|
---|
86 | public SymbolicDataAnalysisExpressionTreeLinearInterpreter()
|
---|
87 | : base("SymbolicDataAnalysisExpressionTreeLinearInterpreter", "Linear (non-recursive) interpreter for symbolic expression trees (does not support ADFs).") {
|
---|
88 | Parameters.Add(new FixedValueParameter<BoolValue>(CheckExpressionsWithIntervalArithmeticParameterName, CheckExpressionsWithIntervalArithmeticParameterDescription, new BoolValue(false)));
|
---|
89 | Parameters.Add(new FixedValueParameter<IntValue>(EvaluatedSolutionsParameterName, "A counter for the total number of solutions the interpreter has evaluated", new IntValue(0)));
|
---|
90 | interpreter = new SymbolicDataAnalysisExpressionTreeInterpreter();
|
---|
91 | }
|
---|
92 |
|
---|
93 | public SymbolicDataAnalysisExpressionTreeLinearInterpreter(string name, string description)
|
---|
94 | : base(name, description) {
|
---|
95 | Parameters.Add(new FixedValueParameter<BoolValue>(CheckExpressionsWithIntervalArithmeticParameterName, CheckExpressionsWithIntervalArithmeticParameterDescription, new BoolValue(false)));
|
---|
96 | Parameters.Add(new FixedValueParameter<IntValue>(EvaluatedSolutionsParameterName, "A counter for the total number of solutions the interpreter has evaluated", new IntValue(0)));
|
---|
97 | interpreter = new SymbolicDataAnalysisExpressionTreeInterpreter();
|
---|
98 | }
|
---|
99 |
|
---|
100 | [StorableHook(HookType.AfterDeserialization)]
|
---|
101 | private void AfterDeserialization() {
|
---|
102 | var evaluatedSolutions = new IntValue(0);
|
---|
103 | var checkExpressionsWithIntervalArithmetic = new BoolValue(false);
|
---|
104 | if (Parameters.ContainsKey(EvaluatedSolutionsParameterName)) {
|
---|
105 | var evaluatedSolutionsParameter = (IValueParameter<IntValue>)Parameters[EvaluatedSolutionsParameterName];
|
---|
106 | evaluatedSolutions = evaluatedSolutionsParameter.Value;
|
---|
107 | Parameters.Remove(EvaluatedSolutionsParameterName);
|
---|
108 | }
|
---|
109 | Parameters.Add(new FixedValueParameter<IntValue>(EvaluatedSolutionsParameterName, "A counter for the total number of solutions the interpreter has evaluated", evaluatedSolutions));
|
---|
110 | if (Parameters.ContainsKey(CheckExpressionsWithIntervalArithmeticParameterName)) {
|
---|
111 | var checkExpressionsWithIntervalArithmeticParameter = (IValueParameter<BoolValue>)Parameters[CheckExpressionsWithIntervalArithmeticParameterName];
|
---|
112 | Parameters.Remove(CheckExpressionsWithIntervalArithmeticParameterName);
|
---|
113 | checkExpressionsWithIntervalArithmetic = checkExpressionsWithIntervalArithmeticParameter.Value;
|
---|
114 | }
|
---|
115 | Parameters.Add(new FixedValueParameter<BoolValue>(CheckExpressionsWithIntervalArithmeticParameterName, CheckExpressionsWithIntervalArithmeticParameterDescription, checkExpressionsWithIntervalArithmetic));
|
---|
116 | }
|
---|
117 |
|
---|
118 | #region IStatefulItem
|
---|
119 | public void InitializeState() {
|
---|
120 | EvaluatedSolutions = 0;
|
---|
121 | }
|
---|
122 |
|
---|
123 | public void ClearState() { }
|
---|
124 | #endregion
|
---|
125 |
|
---|
126 | private readonly object syncRoot = new object();
|
---|
127 | public IEnumerable<double> GetSymbolicExpressionTreeValues(ISymbolicExpressionTree tree, IDataset dataset, IEnumerable<int> rows) {
|
---|
128 | if (!rows.Any()) return Enumerable.Empty<double>();
|
---|
129 | if (CheckExpressionsWithIntervalArithmetic)
|
---|
130 | throw new NotSupportedException("Interval arithmetic is not yet supported in the symbolic data analysis interpreter.");
|
---|
131 |
|
---|
132 | lock (syncRoot) {
|
---|
133 | EvaluatedSolutions++; // increment the evaluated solutions counter
|
---|
134 | }
|
---|
135 |
|
---|
136 | var code = SymbolicExpressionTreeLinearCompiler.Compile(tree, OpCodes.MapSymbolToOpCode);
|
---|
137 | PrepareInstructions(code, dataset);
|
---|
138 | return rows.Select(row => Evaluate(dataset, row, code));
|
---|
139 | }
|
---|
140 |
|
---|
141 | // NOTE: do not use this method when evaluating trees. this method is provided as a shortcut for evaluating subtrees ad-hoc
|
---|
142 | public IEnumerable<double> GetValues(ISymbolicExpressionTreeNode node, IDataset dataset, IEnumerable<int> rows) {
|
---|
143 | var code = SymbolicExpressionTreeLinearCompiler.Compile(node, OpCodes.MapSymbolToOpCode);
|
---|
144 | PrepareInstructions(code, dataset);
|
---|
145 | return rows.Select(row => Evaluate(dataset, row, code));
|
---|
146 | }
|
---|
147 |
|
---|
148 | private double Evaluate(IDataset dataset, int row, LinearInstruction[] code) {
|
---|
149 | for (int i = code.Length - 1; i >= 0; --i) {
|
---|
150 | if (code[i].skip) continue;
|
---|
151 | #region opcode if
|
---|
152 | var instr = code[i];
|
---|
153 | if (instr.opCode == OpCodes.Variable) {
|
---|
154 | if (row < 0 || row >= dataset.Rows) instr.value = double.NaN;
|
---|
155 | else {
|
---|
156 | var variableTreeNode = (VariableTreeNode)instr.dynamicNode;
|
---|
157 | instr.value = ((IList<double>)instr.data)[row] * variableTreeNode.Weight;
|
---|
158 | }
|
---|
159 | } else if (instr.opCode == OpCodes.BinaryFactorVariable) {
|
---|
160 | if (row < 0 || row >= dataset.Rows) instr.value = double.NaN;
|
---|
161 | else {
|
---|
162 | var factorTreeNode = instr.dynamicNode as BinaryFactorVariableTreeNode;
|
---|
163 | instr.value = ((IList<string>)instr.data)[row] == factorTreeNode.VariableValue ? factorTreeNode.Weight : 0;
|
---|
164 | }
|
---|
165 | } else if (instr.opCode == OpCodes.FactorVariable) {
|
---|
166 | if (row < 0 || row >= dataset.Rows) instr.value = double.NaN;
|
---|
167 | else {
|
---|
168 | var factorTreeNode = instr.dynamicNode as FactorVariableTreeNode;
|
---|
169 | instr.value = factorTreeNode.GetValue(((IList<string>)instr.data)[row]);
|
---|
170 | }
|
---|
171 | } else if (instr.opCode == OpCodes.LagVariable) {
|
---|
172 | var laggedVariableTreeNode = (LaggedVariableTreeNode)instr.dynamicNode;
|
---|
173 | int actualRow = row + laggedVariableTreeNode.Lag;
|
---|
174 | if (actualRow < 0 || actualRow >= dataset.Rows)
|
---|
175 | instr.value = double.NaN;
|
---|
176 | else
|
---|
177 | instr.value = ((IList<double>)instr.data)[actualRow] * laggedVariableTreeNode.Weight;
|
---|
178 | } else if (instr.opCode == OpCodes.VariableCondition) {
|
---|
179 | if (row < 0 || row >= dataset.Rows) instr.value = double.NaN;
|
---|
180 | var variableConditionTreeNode = (VariableConditionTreeNode)instr.dynamicNode;
|
---|
181 | if (!variableConditionTreeNode.Symbol.IgnoreSlope) {
|
---|
182 | double variableValue = ((IList<double>)instr.data)[row];
|
---|
183 | double x = variableValue - variableConditionTreeNode.Threshold;
|
---|
184 | double p = 1 / (1 + Math.Exp(-variableConditionTreeNode.Slope * x));
|
---|
185 |
|
---|
186 | double trueBranch = code[instr.childIndex].value;
|
---|
187 | double falseBranch = code[instr.childIndex + 1].value;
|
---|
188 |
|
---|
189 | instr.value = trueBranch * p + falseBranch * (1 - p);
|
---|
190 | } else {
|
---|
191 | double variableValue = ((IList<double>)instr.data)[row];
|
---|
192 | if (variableValue <= variableConditionTreeNode.Threshold) {
|
---|
193 | instr.value = code[instr.childIndex].value;
|
---|
194 | } else {
|
---|
195 | instr.value = code[instr.childIndex + 1].value;
|
---|
196 | }
|
---|
197 | }
|
---|
198 | } else if (instr.opCode == OpCodes.Add) {
|
---|
199 | double s = code[instr.childIndex].value;
|
---|
200 | for (int j = 1; j != instr.nArguments; ++j) {
|
---|
201 | s += code[instr.childIndex + j].value;
|
---|
202 | }
|
---|
203 | instr.value = s;
|
---|
204 | } else if (instr.opCode == OpCodes.Sub) {
|
---|
205 | double s = code[instr.childIndex].value;
|
---|
206 | for (int j = 1; j != instr.nArguments; ++j) {
|
---|
207 | s -= code[instr.childIndex + j].value;
|
---|
208 | }
|
---|
209 | if (instr.nArguments == 1) s = -s;
|
---|
210 | instr.value = s;
|
---|
211 | } else if (instr.opCode == OpCodes.Mul) {
|
---|
212 | double p = code[instr.childIndex].value;
|
---|
213 | for (int j = 1; j != instr.nArguments; ++j) {
|
---|
214 | p *= code[instr.childIndex + j].value;
|
---|
215 | }
|
---|
216 | instr.value = p;
|
---|
217 | } else if (instr.opCode == OpCodes.Div) {
|
---|
218 | double p = code[instr.childIndex].value;
|
---|
219 | for (int j = 1; j != instr.nArguments; ++j) {
|
---|
220 | p /= code[instr.childIndex + j].value;
|
---|
221 | }
|
---|
222 | if (instr.nArguments == 1) p = 1.0 / p;
|
---|
223 | instr.value = p;
|
---|
224 | } else if (instr.opCode == OpCodes.Average) {
|
---|
225 | double s = code[instr.childIndex].value;
|
---|
226 | for (int j = 1; j != instr.nArguments; ++j) {
|
---|
227 | s += code[instr.childIndex + j].value;
|
---|
228 | }
|
---|
229 | instr.value = s / instr.nArguments;
|
---|
230 | } else if (instr.opCode == OpCodes.Cos) {
|
---|
231 | instr.value = Math.Cos(code[instr.childIndex].value);
|
---|
232 | } else if (instr.opCode == OpCodes.Sin) {
|
---|
233 | instr.value = Math.Sin(code[instr.childIndex].value);
|
---|
234 | } else if (instr.opCode == OpCodes.Tan) {
|
---|
235 | instr.value = Math.Tan(code[instr.childIndex].value);
|
---|
236 | } else if (instr.opCode == OpCodes.Square) {
|
---|
237 | instr.value = Math.Pow(code[instr.childIndex].value, 2);
|
---|
238 | } else if (instr.opCode == OpCodes.Power) {
|
---|
239 | double x = code[instr.childIndex].value;
|
---|
240 | double y = Math.Round(code[instr.childIndex + 1].value);
|
---|
241 | instr.value = Math.Pow(x, y);
|
---|
242 | } else if (instr.opCode == OpCodes.SquareRoot) {
|
---|
243 | instr.value = Math.Sqrt(code[instr.childIndex].value);
|
---|
244 | } else if (instr.opCode == OpCodes.Root) {
|
---|
245 | double x = code[instr.childIndex].value;
|
---|
246 | double y = Math.Round(code[instr.childIndex + 1].value);
|
---|
247 | instr.value = Math.Pow(x, 1 / y);
|
---|
248 | } else if (instr.opCode == OpCodes.Exp) {
|
---|
249 | instr.value = Math.Exp(code[instr.childIndex].value);
|
---|
250 | } else if (instr.opCode == OpCodes.Log) {
|
---|
251 | instr.value = Math.Log(code[instr.childIndex].value);
|
---|
252 | } else if (instr.opCode == OpCodes.Gamma) {
|
---|
253 | var x = code[instr.childIndex].value;
|
---|
254 | instr.value = double.IsNaN(x) ? double.NaN : alglib.gammafunction(x);
|
---|
255 | } else if (instr.opCode == OpCodes.Psi) {
|
---|
256 | var x = code[instr.childIndex].value;
|
---|
257 | if (double.IsNaN(x)) instr.value = double.NaN;
|
---|
258 | else if (x <= 0 && (Math.Floor(x) - x).IsAlmost(0)) instr.value = double.NaN;
|
---|
259 | else instr.value = alglib.psi(x);
|
---|
260 | } else if (instr.opCode == OpCodes.Dawson) {
|
---|
261 | var x = code[instr.childIndex].value;
|
---|
262 | instr.value = double.IsNaN(x) ? double.NaN : alglib.dawsonintegral(x);
|
---|
263 | } else if (instr.opCode == OpCodes.ExponentialIntegralEi) {
|
---|
264 | var x = code[instr.childIndex].value;
|
---|
265 | instr.value = double.IsNaN(x) ? double.NaN : alglib.exponentialintegralei(x);
|
---|
266 | } else if (instr.opCode == OpCodes.SineIntegral) {
|
---|
267 | double si, ci;
|
---|
268 | var x = code[instr.childIndex].value;
|
---|
269 | if (double.IsNaN(x)) instr.value = double.NaN;
|
---|
270 | else {
|
---|
271 | alglib.sinecosineintegrals(x, out si, out ci);
|
---|
272 | instr.value = si;
|
---|
273 | }
|
---|
274 | } else if (instr.opCode == OpCodes.CosineIntegral) {
|
---|
275 | double si, ci;
|
---|
276 | var x = code[instr.childIndex].value;
|
---|
277 | if (double.IsNaN(x)) instr.value = double.NaN;
|
---|
278 | else {
|
---|
279 | alglib.sinecosineintegrals(x, out si, out ci);
|
---|
280 | instr.value = ci;
|
---|
281 | }
|
---|
282 | } else if (instr.opCode == OpCodes.HyperbolicSineIntegral) {
|
---|
283 | double shi, chi;
|
---|
284 | var x = code[instr.childIndex].value;
|
---|
285 | if (double.IsNaN(x)) instr.value = double.NaN;
|
---|
286 | else {
|
---|
287 | alglib.hyperbolicsinecosineintegrals(x, out shi, out chi);
|
---|
288 | instr.value = shi;
|
---|
289 | }
|
---|
290 | } else if (instr.opCode == OpCodes.HyperbolicCosineIntegral) {
|
---|
291 | double shi, chi;
|
---|
292 | var x = code[instr.childIndex].value;
|
---|
293 | if (double.IsNaN(x)) instr.value = double.NaN;
|
---|
294 | else {
|
---|
295 | alglib.hyperbolicsinecosineintegrals(x, out shi, out chi);
|
---|
296 | instr.value = chi;
|
---|
297 | }
|
---|
298 | } else if (instr.opCode == OpCodes.FresnelCosineIntegral) {
|
---|
299 | double c = 0, s = 0;
|
---|
300 | var x = code[instr.childIndex].value;
|
---|
301 | if (double.IsNaN(x)) instr.value = double.NaN;
|
---|
302 | else {
|
---|
303 | alglib.fresnelintegral(x, ref c, ref s);
|
---|
304 | instr.value = c;
|
---|
305 | }
|
---|
306 | } else if (instr.opCode == OpCodes.FresnelSineIntegral) {
|
---|
307 | double c = 0, s = 0;
|
---|
308 | var x = code[instr.childIndex].value;
|
---|
309 | if (double.IsNaN(x)) instr.value = double.NaN;
|
---|
310 | else {
|
---|
311 | alglib.fresnelintegral(x, ref c, ref s);
|
---|
312 | instr.value = s;
|
---|
313 | }
|
---|
314 | } else if (instr.opCode == OpCodes.AiryA) {
|
---|
315 | double ai, aip, bi, bip;
|
---|
316 | var x = code[instr.childIndex].value;
|
---|
317 | if (double.IsNaN(x)) instr.value = double.NaN;
|
---|
318 | else {
|
---|
319 | alglib.airy(x, out ai, out aip, out bi, out bip);
|
---|
320 | instr.value = ai;
|
---|
321 | }
|
---|
322 | } else if (instr.opCode == OpCodes.AiryB) {
|
---|
323 | double ai, aip, bi, bip;
|
---|
324 | var x = code[instr.childIndex].value;
|
---|
325 | if (double.IsNaN(x)) instr.value = double.NaN;
|
---|
326 | else {
|
---|
327 | alglib.airy(x, out ai, out aip, out bi, out bip);
|
---|
328 | instr.value = bi;
|
---|
329 | }
|
---|
330 | } else if (instr.opCode == OpCodes.Norm) {
|
---|
331 | var x = code[instr.childIndex].value;
|
---|
332 | if (double.IsNaN(x)) instr.value = double.NaN;
|
---|
333 | else instr.value = alglib.normaldistribution(x);
|
---|
334 | } else if (instr.opCode == OpCodes.Erf) {
|
---|
335 | var x = code[instr.childIndex].value;
|
---|
336 | if (double.IsNaN(x)) instr.value = double.NaN;
|
---|
337 | else instr.value = alglib.errorfunction(x);
|
---|
338 | } else if (instr.opCode == OpCodes.Bessel) {
|
---|
339 | var x = code[instr.childIndex].value;
|
---|
340 | if (double.IsNaN(x)) instr.value = double.NaN;
|
---|
341 | else instr.value = alglib.besseli0(x);
|
---|
342 | } else if (instr.opCode == OpCodes.IfThenElse) {
|
---|
343 | double condition = code[instr.childIndex].value;
|
---|
344 | double result;
|
---|
345 | if (condition > 0.0) {
|
---|
346 | result = code[instr.childIndex + 1].value;
|
---|
347 | } else {
|
---|
348 | result = code[instr.childIndex + 2].value;
|
---|
349 | }
|
---|
350 | instr.value = result;
|
---|
351 | } else if (instr.opCode == OpCodes.AND) {
|
---|
352 | double result = code[instr.childIndex].value;
|
---|
353 | for (int j = 1; j < instr.nArguments; j++) {
|
---|
354 | if (result > 0.0) result = code[instr.childIndex + j].value;
|
---|
355 | else break;
|
---|
356 | }
|
---|
357 | instr.value = result > 0.0 ? 1.0 : -1.0;
|
---|
358 | } else if (instr.opCode == OpCodes.OR) {
|
---|
359 | double result = code[instr.childIndex].value;
|
---|
360 | for (int j = 1; j < instr.nArguments; j++) {
|
---|
361 | if (result <= 0.0) result = code[instr.childIndex + j].value;
|
---|
362 | else break;
|
---|
363 | }
|
---|
364 | instr.value = result > 0.0 ? 1.0 : -1.0;
|
---|
365 | } else if (instr.opCode == OpCodes.NOT) {
|
---|
366 | instr.value = code[instr.childIndex].value > 0.0 ? -1.0 : 1.0;
|
---|
367 | } else if (instr.opCode == OpCodes.XOR) {
|
---|
368 | int positiveSignals = 0;
|
---|
369 | for (int j = 0; j < instr.nArguments; j++) {
|
---|
370 | if (code[instr.childIndex + j].value > 0.0) positiveSignals++;
|
---|
371 | }
|
---|
372 | instr.value = positiveSignals % 2 != 0 ? 1.0 : -1.0;
|
---|
373 | } else if (instr.opCode == OpCodes.GT) {
|
---|
374 | double x = code[instr.childIndex].value;
|
---|
375 | double y = code[instr.childIndex + 1].value;
|
---|
376 | instr.value = x > y ? 1.0 : -1.0;
|
---|
377 | } else if (instr.opCode == OpCodes.LT) {
|
---|
378 | double x = code[instr.childIndex].value;
|
---|
379 | double y = code[instr.childIndex + 1].value;
|
---|
380 | instr.value = x < y ? 1.0 : -1.0;
|
---|
381 | } else if (instr.opCode == OpCodes.TimeLag || instr.opCode == OpCodes.Derivative || instr.opCode == OpCodes.Integral) {
|
---|
382 | var state = (InterpreterState)instr.data;
|
---|
383 | state.Reset();
|
---|
384 | instr.value = interpreter.Evaluate(dataset, ref row, state);
|
---|
385 | } else {
|
---|
386 | var errorText = string.Format("The {0} symbol is not supported by the linear interpreter. To support this symbol, please use the SymbolicDataAnalysisExpressionTreeInterpreter.", instr.dynamicNode.Symbol.Name);
|
---|
387 | throw new NotSupportedException(errorText);
|
---|
388 | }
|
---|
389 | #endregion
|
---|
390 | }
|
---|
391 | return code[0].value;
|
---|
392 | }
|
---|
393 |
|
---|
394 | private static LinearInstruction[] GetPrefixSequence(LinearInstruction[] code, int startIndex) {
|
---|
395 | var s = new Stack<int>();
|
---|
396 | var list = new List<LinearInstruction>();
|
---|
397 | s.Push(startIndex);
|
---|
398 | while (s.Any()) {
|
---|
399 | int i = s.Pop();
|
---|
400 | var instr = code[i];
|
---|
401 | // push instructions in reverse execution order
|
---|
402 | for (int j = instr.nArguments - 1; j >= 0; j--) s.Push(instr.childIndex + j);
|
---|
403 | list.Add(instr);
|
---|
404 | }
|
---|
405 | return list.ToArray();
|
---|
406 | }
|
---|
407 |
|
---|
408 | public static void PrepareInstructions(LinearInstruction[] code, IDataset dataset) {
|
---|
409 | for (int i = 0; i != code.Length; ++i) {
|
---|
410 | var instr = code[i];
|
---|
411 | #region opcode switch
|
---|
412 | switch (instr.opCode) {
|
---|
413 | case OpCodes.Constant: {
|
---|
414 | var constTreeNode = (ConstantTreeNode)instr.dynamicNode;
|
---|
415 | instr.value = constTreeNode.Value;
|
---|
416 | instr.skip = true; // the value is already set so this instruction should be skipped in the evaluation phase
|
---|
417 | }
|
---|
418 | break;
|
---|
419 | case OpCodes.Variable: {
|
---|
420 | var variableTreeNode = (VariableTreeNode)instr.dynamicNode;
|
---|
421 | instr.data = dataset.GetReadOnlyDoubleValues(variableTreeNode.VariableName);
|
---|
422 | }
|
---|
423 | break;
|
---|
424 | case OpCodes.BinaryFactorVariable: {
|
---|
425 | var factorVariableTreeNode = instr.dynamicNode as BinaryFactorVariableTreeNode;
|
---|
426 | instr.data = dataset.GetReadOnlyStringValues(factorVariableTreeNode.VariableName);
|
---|
427 | }
|
---|
428 | break;
|
---|
429 | case OpCodes.FactorVariable: {
|
---|
430 | var factorVariableTreeNode = instr.dynamicNode as FactorVariableTreeNode;
|
---|
431 | instr.data = dataset.GetReadOnlyStringValues(factorVariableTreeNode.VariableName);
|
---|
432 | }
|
---|
433 | break;
|
---|
434 | case OpCodes.LagVariable: {
|
---|
435 | var laggedVariableTreeNode = (LaggedVariableTreeNode)instr.dynamicNode;
|
---|
436 | instr.data = dataset.GetReadOnlyDoubleValues(laggedVariableTreeNode.VariableName);
|
---|
437 | }
|
---|
438 | break;
|
---|
439 | case OpCodes.VariableCondition: {
|
---|
440 | var variableConditionTreeNode = (VariableConditionTreeNode)instr.dynamicNode;
|
---|
441 | instr.data = dataset.GetReadOnlyDoubleValues(variableConditionTreeNode.VariableName);
|
---|
442 | }
|
---|
443 | break;
|
---|
444 | case OpCodes.TimeLag:
|
---|
445 | case OpCodes.Integral:
|
---|
446 | case OpCodes.Derivative: {
|
---|
447 | var seq = GetPrefixSequence(code, i);
|
---|
448 | var interpreterState = new InterpreterState(seq, 0);
|
---|
449 | instr.data = interpreterState;
|
---|
450 | for (int j = 1; j != seq.Length; ++j)
|
---|
451 | seq[j].skip = true;
|
---|
452 | break;
|
---|
453 | }
|
---|
454 | }
|
---|
455 | #endregion
|
---|
456 | }
|
---|
457 | }
|
---|
458 | }
|
---|
459 | }
|
---|