[11461] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Analysis;
|
---|
| 26 | using HeuristicLab.Common;
|
---|
| 27 | using HeuristicLab.Core;
|
---|
| 28 | using HeuristicLab.Data;
|
---|
| 29 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 30 | using HeuristicLab.Operators;
|
---|
| 31 | using HeuristicLab.Optimization;
|
---|
| 32 | using HeuristicLab.Parameters;
|
---|
| 33 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 34 |
|
---|
| 35 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Analyzers {
|
---|
| 36 | [StorableClass]
|
---|
| 37 | [Item("SymbolicDataAnalysisUsefulGenesAnalyzer", "An analyzer which performs pruning by promoting genes in the population that outperform their containing individuals (the individuals are replaced by their subparts).")]
|
---|
| 38 | public class SymbolicDataAnalysisUsefulGenesAnalyzer : SingleSuccessorOperator, ISymbolicDataAnalysisAnalyzer {
|
---|
| 39 | private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
|
---|
| 40 | private const string QualityParameterName = "Quality";
|
---|
| 41 | private const string ResultCollectionParameterName = "Results";
|
---|
| 42 | private const string SymbolicDataAnalysisTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
|
---|
| 43 | private const string ProblemDataParameterName = "ProblemData";
|
---|
| 44 | private const string GenerationsParameterName = "Generations";
|
---|
| 45 | private const string UpdateCounterParameterName = "UpdateCounter";
|
---|
| 46 | private const string UpdateIntervalParameterName = "UpdateInterval";
|
---|
[11462] | 47 | private const string MinimumGenerationsParameterName = "MinimumGenerations";
|
---|
[11461] | 48 | private const string PruningProbabilityParameterName = "PruningProbability";
|
---|
| 49 | private const string PercentageOfBestSolutionsParameterName = "PercentageOfBestSolutions";
|
---|
| 50 | private const string PromotedSubtreesResultName = "Promoted subtrees";
|
---|
[11462] | 51 | private const string AverageQualityImprovementResultName = "Average quality improvement";
|
---|
| 52 | private const string AverageLengthReductionResultName = "Average length reduction";
|
---|
[11461] | 53 | private const string RandomParameterName = "Random";
|
---|
| 54 |
|
---|
| 55 | #region Parameters
|
---|
| 56 | public IScopeTreeLookupParameter<ISymbolicExpressionTree> SymbolicExpressionTreeParameter {
|
---|
| 57 | get { return (IScopeTreeLookupParameter<ISymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
|
---|
| 58 | }
|
---|
| 59 |
|
---|
| 60 | public IScopeTreeLookupParameter<DoubleValue> QualityParameter {
|
---|
| 61 | get { return (IScopeTreeLookupParameter<DoubleValue>)Parameters[QualityParameterName]; }
|
---|
| 62 | }
|
---|
| 63 |
|
---|
| 64 | public ILookupParameter<IRandom> RandomParameter {
|
---|
| 65 | get { return (ILookupParameter<IRandom>)Parameters[RandomParameterName]; }
|
---|
| 66 | }
|
---|
| 67 |
|
---|
| 68 | public ILookupParameter<ResultCollection> ResultCollectionParameter {
|
---|
| 69 | get { return (ILookupParameter<ResultCollection>)Parameters[ResultCollectionParameterName]; }
|
---|
| 70 | }
|
---|
| 71 |
|
---|
| 72 | public ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter> SymbolicDataAnalysisTreeInterpreterParameter {
|
---|
| 73 | get { return (ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>)Parameters[SymbolicDataAnalysisTreeInterpreterParameterName]; }
|
---|
| 74 | }
|
---|
| 75 |
|
---|
| 76 | public ILookupParameter<IDataAnalysisProblemData> ProblemDataParameter {
|
---|
| 77 | get { return (ILookupParameter<IDataAnalysisProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
| 78 | }
|
---|
| 79 |
|
---|
| 80 | public ILookupParameter<IntValue> GenerationsParameter {
|
---|
| 81 | get { return (ILookupParameter<IntValue>)Parameters[GenerationsParameterName]; }
|
---|
| 82 | }
|
---|
| 83 |
|
---|
| 84 | public ValueParameter<IntValue> UpdateCounterParameter {
|
---|
| 85 | get { return (ValueParameter<IntValue>)Parameters[UpdateCounterParameterName]; }
|
---|
| 86 | }
|
---|
| 87 |
|
---|
| 88 | public ValueParameter<IntValue> UpdateIntervalParameter {
|
---|
| 89 | get { return (ValueParameter<IntValue>)Parameters[UpdateIntervalParameterName]; }
|
---|
| 90 | }
|
---|
| 91 |
|
---|
[11462] | 92 | public ValueParameter<IntValue> MinimumGenerationsParameter {
|
---|
| 93 | get { return (ValueParameter<IntValue>)Parameters[MinimumGenerationsParameterName]; }
|
---|
| 94 | }
|
---|
| 95 |
|
---|
[11461] | 96 | public ValueParameter<PercentValue> PercentageOfBestSolutionsParameter {
|
---|
| 97 | get { return (ValueParameter<PercentValue>)Parameters[PercentageOfBestSolutionsParameterName]; }
|
---|
| 98 | }
|
---|
| 99 |
|
---|
| 100 | public ValueParameter<PercentValue> PruningProbabilityParameter {
|
---|
| 101 | get { return (ValueParameter<PercentValue>)Parameters[PruningProbabilityParameterName]; }
|
---|
| 102 | }
|
---|
| 103 | #endregion
|
---|
| 104 |
|
---|
| 105 | #region Parameter properties
|
---|
| 106 | public int UpdateCounter {
|
---|
| 107 | get { return UpdateCounterParameter.Value.Value; }
|
---|
| 108 | set { UpdateCounterParameter.Value.Value = value; }
|
---|
| 109 | }
|
---|
| 110 |
|
---|
| 111 | public int UpdateInterval {
|
---|
| 112 | get { return UpdateIntervalParameter.Value.Value; }
|
---|
| 113 | set { UpdateIntervalParameter.Value.Value = value; }
|
---|
| 114 | }
|
---|
| 115 |
|
---|
[11462] | 116 | public int MinimumGenerations {
|
---|
| 117 | get { return MinimumGenerationsParameter.Value.Value; }
|
---|
| 118 | set { MinimumGenerationsParameter.Value.Value = value; }
|
---|
| 119 | }
|
---|
| 120 |
|
---|
[11461] | 121 | public double PercentageOfBestSolutions {
|
---|
| 122 | get { return PercentageOfBestSolutionsParameter.Value.Value; }
|
---|
| 123 | set { PercentageOfBestSolutionsParameter.Value.Value = value; }
|
---|
| 124 | }
|
---|
| 125 |
|
---|
| 126 | public double PruningProbability {
|
---|
| 127 | get { return PruningProbabilityParameter.Value.Value; }
|
---|
| 128 | set { PruningProbabilityParameter.Value.Value = value; }
|
---|
| 129 | }
|
---|
| 130 | #endregion
|
---|
| 131 |
|
---|
| 132 | public SymbolicDataAnalysisUsefulGenesAnalyzer() {
|
---|
| 133 | #region Add parameters
|
---|
| 134 | Parameters.Add(new ScopeTreeLookupParameter<ISymbolicExpressionTree>(SymbolicExpressionTreeParameterName));
|
---|
| 135 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>(QualityParameterName));
|
---|
| 136 | Parameters.Add(new LookupParameter<IRandom>(RandomParameterName));
|
---|
| 137 | Parameters.Add(new LookupParameter<ResultCollection>(ResultCollectionParameterName));
|
---|
| 138 | Parameters.Add(new LookupParameter<IDataAnalysisProblemData>(ProblemDataParameterName));
|
---|
| 139 | Parameters.Add(new LookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>(SymbolicDataAnalysisTreeInterpreterParameterName));
|
---|
| 140 | Parameters.Add(new LookupParameter<IntValue>(GenerationsParameterName));
|
---|
| 141 | Parameters.Add(new ValueParameter<IntValue>(UpdateCounterParameterName, new IntValue(0)));
|
---|
| 142 | Parameters.Add(new ValueParameter<IntValue>(UpdateIntervalParameterName, new IntValue(1)));
|
---|
[11462] | 143 | Parameters.Add(new ValueParameter<IntValue>(MinimumGenerationsParameterName, "The minimum number of generations the algorithm must be let to evolve before applying this analyzer.", new IntValue(50)));
|
---|
| 144 | Parameters.Add(new ValueParameter<PercentValue>(PercentageOfBestSolutionsParameterName, "How many of the best individuals should be pruned using this method.", new PercentValue(1.0)));
|
---|
| 145 | Parameters.Add(new ValueParameter<PercentValue>(PruningProbabilityParameterName, "The probability to apply pruning", new PercentValue(0.1)));
|
---|
[11461] | 146 | #endregion
|
---|
| 147 | }
|
---|
| 148 |
|
---|
| 149 | protected SymbolicDataAnalysisUsefulGenesAnalyzer(SymbolicDataAnalysisUsefulGenesAnalyzer original, Cloner cloner)
|
---|
| 150 | : base(original, cloner) { }
|
---|
| 151 |
|
---|
| 152 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 153 | return new SymbolicDataAnalysisUsefulGenesAnalyzer(this, cloner);
|
---|
| 154 | }
|
---|
| 155 |
|
---|
| 156 | [StorableConstructor]
|
---|
| 157 | protected SymbolicDataAnalysisUsefulGenesAnalyzer(bool deserializing)
|
---|
| 158 | : base(deserializing) {
|
---|
| 159 | }
|
---|
| 160 |
|
---|
| 161 | public bool EnabledByDefault {
|
---|
| 162 | get { return false; }
|
---|
| 163 | }
|
---|
| 164 |
|
---|
[11462] | 165 | public override void InitializeState() {
|
---|
| 166 | UpdateCounter = 0;
|
---|
| 167 | base.InitializeState();
|
---|
| 168 | }
|
---|
| 169 |
|
---|
[11461] | 170 | public override IOperation Apply() {
|
---|
[11462] | 171 | int generations = GenerationsParameter.ActualValue.Value;
|
---|
[11461] | 172 | #region Update counter & update interval
|
---|
[11462] | 173 | if (generations < MinimumGenerations)
|
---|
| 174 | return base.Apply();
|
---|
[11461] | 175 | UpdateCounter++;
|
---|
| 176 | if (UpdateCounter != UpdateInterval) {
|
---|
| 177 | return base.Apply();
|
---|
| 178 | }
|
---|
| 179 | UpdateCounter = 0;
|
---|
| 180 | #endregion
|
---|
| 181 |
|
---|
| 182 | var trees = SymbolicExpressionTreeParameter.ActualValue.ToArray();
|
---|
| 183 | var qualities = QualityParameter.ActualValue.ToArray();
|
---|
| 184 |
|
---|
[11462] | 185 | Array.Sort(qualities, trees); // sort trees array based on qualities
|
---|
[11461] | 186 |
|
---|
| 187 | var interpreter = SymbolicDataAnalysisTreeInterpreterParameter.ActualValue;
|
---|
| 188 | var problemData = (IRegressionProblemData)ProblemDataParameter.ActualValue;
|
---|
| 189 | var rows = problemData.TrainingIndices.ToList();
|
---|
| 190 | var random = RandomParameter.ActualValue;
|
---|
| 191 |
|
---|
| 192 | int replacedTrees = 0;
|
---|
[11462] | 193 | int avgLengthReduction = 0;
|
---|
| 194 | double avgQualityImprovement = 0;
|
---|
[11461] | 195 |
|
---|
| 196 | var count = (int)Math.Floor(trees.Length * PercentageOfBestSolutions);
|
---|
| 197 |
|
---|
[11462] | 198 | for (int i = trees.Length - 1; i >= trees.Length - count; --i) {
|
---|
| 199 | if (random.NextDouble() > PruningProbability) continue;
|
---|
[11461] | 200 | var tree = trees[i];
|
---|
| 201 | var quality = qualities[i].Value;
|
---|
| 202 | var root = tree.Root.GetSubtree(0).GetSubtree(0);
|
---|
| 203 |
|
---|
[11462] | 204 | foreach (var s in root.IterateNodesPrefix().Skip(1)) {
|
---|
[11461] | 205 | var r2 = EvaluateSubtree(s, interpreter, problemData, rows);
|
---|
[11462] | 206 | if (double.IsNaN(r2) || r2 <= quality) continue;
|
---|
| 207 | avgQualityImprovement += (r2 - quality);
|
---|
| 208 | avgLengthReduction += (tree.Length - s.GetLength());
|
---|
| 209 | replacedTrees++;
|
---|
| 210 | // replace tree with its own subtree
|
---|
[11461] | 211 | var startNode = tree.Root.GetSubtree(0);
|
---|
| 212 | startNode.RemoveSubtree(0);
|
---|
| 213 | startNode.AddSubtree(s);
|
---|
[11462] | 214 | // update tree quality
|
---|
| 215 | qualities[i].Value = r2;
|
---|
| 216 |
|
---|
[11461] | 217 | break;
|
---|
| 218 | }
|
---|
| 219 | }
|
---|
| 220 |
|
---|
[11638] | 221 | avgQualityImprovement = replacedTrees == 0 ? 0 : avgQualityImprovement / replacedTrees;
|
---|
| 222 | avgLengthReduction = replacedTrees == 0 ? 0 : (int)Math.Round((double)avgLengthReduction / replacedTrees);
|
---|
[11462] | 223 |
|
---|
[11461] | 224 | var results = ResultCollectionParameter.ActualValue;
|
---|
| 225 | DataTable table;
|
---|
| 226 | if (results.ContainsKey(PromotedSubtreesResultName)) {
|
---|
| 227 | table = (DataTable)results[PromotedSubtreesResultName].Value;
|
---|
| 228 | } else {
|
---|
| 229 | table = new DataTable(PromotedSubtreesResultName);
|
---|
| 230 | table.Rows.Add(new DataRow(PromotedSubtreesResultName));
|
---|
| 231 | results.Add(new Result(PromotedSubtreesResultName, table));
|
---|
| 232 | }
|
---|
| 233 | table.Rows[PromotedSubtreesResultName].Values.Add(replacedTrees);
|
---|
| 234 |
|
---|
[11462] | 235 | if (results.ContainsKey(AverageQualityImprovementResultName)) {
|
---|
| 236 | table = (DataTable)results[AverageQualityImprovementResultName].Value;
|
---|
| 237 | } else {
|
---|
| 238 | table = new DataTable(AverageQualityImprovementResultName);
|
---|
| 239 | table.Rows.Add(new DataRow(AverageQualityImprovementResultName));
|
---|
| 240 | results.Add(new Result(AverageQualityImprovementResultName, table));
|
---|
| 241 | }
|
---|
| 242 | table.Rows[AverageQualityImprovementResultName].Values.Add(avgQualityImprovement);
|
---|
| 243 |
|
---|
| 244 | if (results.ContainsKey(AverageLengthReductionResultName)) {
|
---|
| 245 | table = (DataTable)results[AverageLengthReductionResultName].Value;
|
---|
| 246 | } else {
|
---|
| 247 | table = new DataTable(AverageLengthReductionResultName);
|
---|
| 248 | table.Rows.Add(new DataRow(AverageLengthReductionResultName));
|
---|
| 249 | results.Add(new Result(AverageLengthReductionResultName, table));
|
---|
| 250 | }
|
---|
| 251 | table.Rows[AverageLengthReductionResultName].Values.Add(avgLengthReduction);
|
---|
| 252 |
|
---|
[11461] | 253 | return base.Apply();
|
---|
| 254 | }
|
---|
| 255 |
|
---|
| 256 | private static double EvaluateSubtree(ISymbolicExpressionTreeNode subtree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, IRegressionProblemData problemData, List<int> rows) {
|
---|
| 257 | var linearInterpreter = (SymbolicDataAnalysisExpressionTreeLinearInterpreter)interpreter;
|
---|
| 258 | var dataset = problemData.Dataset;
|
---|
| 259 |
|
---|
| 260 | var targetValues = dataset.GetDoubleValues(problemData.TargetVariable, rows);
|
---|
| 261 | var estimatedValues = linearInterpreter.GetValues(subtree, dataset, rows);
|
---|
| 262 |
|
---|
| 263 | OnlineCalculatorError error;
|
---|
| 264 | double r2 = OnlinePearsonsRSquaredCalculator.Calculate(targetValues, estimatedValues, out error);
|
---|
| 265 | return (error == OnlineCalculatorError.None) ? r2 : double.NaN;
|
---|
| 266 | }
|
---|
| 267 | }
|
---|
| 268 | }
|
---|