1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Linq;
|
---|
23 | using HeuristicLab.Analysis;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
28 | using HeuristicLab.EvolutionTracking;
|
---|
29 | using HeuristicLab.Optimization;
|
---|
30 | using HeuristicLab.Parameters;
|
---|
31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Analyzers {
|
---|
34 | [StorableClass]
|
---|
35 | [Item("SymbolicDataAnalysisGeneticOperatorImprovementAnalyzer", "An analyzer which records the best and average genetic operator improvement")]
|
---|
36 | public class SymbolicDataAnalysisGeneticOperatorImprovementAnalyzer : EvolutionTrackingAnalyzer<ISymbolicExpressionTree> {
|
---|
37 | public const string QualityParameterName = "Quality";
|
---|
38 | public const string PopulationParameterName = "SymbolicExpressionTree";
|
---|
39 | public const string CountIntermediateChildrenParameterName = "CountIntermediateChildren";
|
---|
40 |
|
---|
41 | public IScopeTreeLookupParameter<DoubleValue> QualityParameter {
|
---|
42 | get { return (IScopeTreeLookupParameter<DoubleValue>)Parameters[QualityParameterName]; }
|
---|
43 | }
|
---|
44 |
|
---|
45 | public IScopeTreeLookupParameter<ISymbolicExpressionTree> PopulationParameter {
|
---|
46 | get { return (IScopeTreeLookupParameter<ISymbolicExpressionTree>)Parameters[PopulationParameterName]; }
|
---|
47 | }
|
---|
48 |
|
---|
49 | public IFixedValueParameter<BoolValue> CountIntermediateChildrenParameter {
|
---|
50 | get { return (IFixedValueParameter<BoolValue>)Parameters[CountIntermediateChildrenParameterName]; }
|
---|
51 | }
|
---|
52 |
|
---|
53 | public bool CountIntermediateChildren {
|
---|
54 | get { return CountIntermediateChildrenParameter.Value.Value; }
|
---|
55 | set { CountIntermediateChildrenParameter.Value.Value = value; }
|
---|
56 | }
|
---|
57 |
|
---|
58 | public SymbolicDataAnalysisGeneticOperatorImprovementAnalyzer() {
|
---|
59 | Parameters.Add(new ScopeTreeLookupParameter<ISymbolicExpressionTree>(PopulationParameterName, "The population of individuals."));
|
---|
60 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>(QualityParameterName, "The individual qualities."));
|
---|
61 | Parameters.Add(new FixedValueParameter<BoolValue>(CountIntermediateChildrenParameterName, "Specifies whether to consider intermediate children (when crossover was followed by mutation). This should be set to false for offspring selection.", new BoolValue(true)));
|
---|
62 |
|
---|
63 | CountIntermediateChildrenParameter.Hidden = true;
|
---|
64 | }
|
---|
65 |
|
---|
66 |
|
---|
67 | [StorableConstructor]
|
---|
68 | protected SymbolicDataAnalysisGeneticOperatorImprovementAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
69 |
|
---|
70 | public SymbolicDataAnalysisGeneticOperatorImprovementAnalyzer(
|
---|
71 | SymbolicDataAnalysisGeneticOperatorImprovementAnalyzer original, Cloner cloner) : base(original, cloner) {
|
---|
72 | CountIntermediateChildren = original.CountIntermediateChildren;
|
---|
73 | }
|
---|
74 |
|
---|
75 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
76 | return new SymbolicDataAnalysisGeneticOperatorImprovementAnalyzer(this, cloner);
|
---|
77 | }
|
---|
78 |
|
---|
79 | [StorableHook(HookType.AfterDeserialization)]
|
---|
80 | private void AfterDeserialization() {
|
---|
81 | if (!Parameters.ContainsKey(CountIntermediateChildrenParameterName))
|
---|
82 | Parameters.Add(new FixedValueParameter<BoolValue>(CountIntermediateChildrenParameterName, "Specifies whether to consider intermediate children (when crossover was followed by mutation", new BoolValue(true)));
|
---|
83 | CountIntermediateChildrenParameter.Hidden = true;
|
---|
84 | }
|
---|
85 |
|
---|
86 | public override IOperation Apply() {
|
---|
87 | IntValue updateCounter = UpdateCounterParameter.ActualValue;
|
---|
88 | if (updateCounter == null) {
|
---|
89 | updateCounter = new IntValue(0);
|
---|
90 | UpdateCounterParameter.ActualValue = updateCounter;
|
---|
91 | }
|
---|
92 | updateCounter.Value++;
|
---|
93 | if (updateCounter.Value != UpdateInterval.Value) return base.Apply();
|
---|
94 | updateCounter.Value = 0;
|
---|
95 |
|
---|
96 | var graph = PopulationGraph;
|
---|
97 | if (graph == null || Generation.Value == 0)
|
---|
98 | return base.Apply();
|
---|
99 |
|
---|
100 | var generation = Generation.Value;
|
---|
101 | var averageQuality = QualityParameter.ActualValue.Average(x => x.Value);
|
---|
102 | var population = PopulationParameter.ActualValue;
|
---|
103 | var populationSize = population.Length;
|
---|
104 |
|
---|
105 | var vertices = population.Select(graph.GetByContent).ToList();
|
---|
106 | DataTable table;
|
---|
107 | double aac = 0; // ratio of above average children produced
|
---|
108 | double aacp = 0; // ratio of above average children from above average parents
|
---|
109 | #region crossover improvement
|
---|
110 | if (!Results.ContainsKey("Crossover improvement")) {
|
---|
111 | table = new DataTable("Crossover improvement");
|
---|
112 | Results.Add(new Result("Crossover improvement", table));
|
---|
113 | table.Rows.AddRange(new[]
|
---|
114 | {
|
---|
115 | new DataRow("Average crossover improvement (root parent)") { VisualProperties = { StartIndexZero = true } },
|
---|
116 | new DataRow("Average crossover improvement (non-root parent)") { VisualProperties = { StartIndexZero = true } },
|
---|
117 | new DataRow("Average child-parents quality difference") { VisualProperties = { StartIndexZero = true } },
|
---|
118 | new DataRow("Best crossover improvement (root parent)") { VisualProperties = { StartIndexZero = true } },
|
---|
119 | new DataRow("Best crossover improvement (non-root parent)") { VisualProperties = { StartIndexZero = true }},
|
---|
120 | new DataRow("Above average children") { VisualProperties = { StartIndexZero = true }},
|
---|
121 | new DataRow("Above average children from above average parents") { VisualProperties = { StartIndexZero = true } },
|
---|
122 | });
|
---|
123 | } else {
|
---|
124 | table = (DataTable)Results["Crossover improvement"].Value;
|
---|
125 | }
|
---|
126 | var crossoverChildren = vertices.Where(x => x.InDegree == 2).ToList();
|
---|
127 | if (CountIntermediateChildren)
|
---|
128 | crossoverChildren.AddRange(vertices.Where(x => x.InDegree == 1).Select(v => v.Parents.First()).Where(p => p.Rank.IsAlmost(generation - 0.5))); // add intermediate children
|
---|
129 |
|
---|
130 | foreach (var c in crossoverChildren) {
|
---|
131 | if (c.Quality > averageQuality) {
|
---|
132 | aac++;
|
---|
133 | if (c.Parents.All(x => x.Quality > averageQuality))
|
---|
134 | aacp++;
|
---|
135 | }
|
---|
136 | }
|
---|
137 | var avgRootParentQualityImprovement = crossoverChildren.Average(x => x.Quality - x.Parents.First().Quality);
|
---|
138 | var avgNonRootParentQualityImprovement = crossoverChildren.Average(x => x.Quality - x.Parents.Last().Quality);
|
---|
139 | var avgChildParentQuality = crossoverChildren.Average(x => x.Quality - x.Parents.Average(p => p.Quality));
|
---|
140 | var bestRootParentQualityImprovement = crossoverChildren.Max(x => x.Quality - x.Parents.First().Quality);
|
---|
141 | var bestNonRootParentQualityImprovement = crossoverChildren.Max(x => x.Quality - x.Parents.Last().Quality);
|
---|
142 | table.Rows["Average crossover improvement (root parent)"].Values.Add(avgRootParentQualityImprovement);
|
---|
143 | table.Rows["Average crossover improvement (non-root parent)"].Values.Add(avgNonRootParentQualityImprovement);
|
---|
144 | table.Rows["Best crossover improvement (root parent)"].Values.Add(bestRootParentQualityImprovement);
|
---|
145 | table.Rows["Best crossover improvement (non-root parent)"].Values.Add(bestNonRootParentQualityImprovement);
|
---|
146 | table.Rows["Average child-parents quality difference"].Values.Add(avgChildParentQuality);
|
---|
147 | table.Rows["Above average children"].Values.Add(aac / populationSize);
|
---|
148 | table.Rows["Above average children from above average parents"].Values.Add(aacp / populationSize);
|
---|
149 | #endregion
|
---|
150 |
|
---|
151 | #region mutation improvement
|
---|
152 | if (!Results.ContainsKey("Mutation improvement")) {
|
---|
153 | table = new DataTable("Mutation improvement");
|
---|
154 | Results.Add(new Result("Mutation improvement", table));
|
---|
155 | table.Rows.AddRange(new[]
|
---|
156 | {
|
---|
157 | new DataRow("Average mutation improvement") { VisualProperties = { StartIndexZero = true } },
|
---|
158 | new DataRow("Best mutation improvement") { VisualProperties = { StartIndexZero = true } },
|
---|
159 | new DataRow("Above average children") { VisualProperties = { StartIndexZero = true } },
|
---|
160 | new DataRow("Above average children from above average parents") { VisualProperties = { StartIndexZero = true } },
|
---|
161 | });
|
---|
162 | } else {
|
---|
163 | table = (DataTable)Results["Mutation improvement"].Value;
|
---|
164 | }
|
---|
165 |
|
---|
166 | aac = 0;
|
---|
167 | aacp = 0;
|
---|
168 | var mutationChildren = vertices.Where(x => x.InDegree == 1).ToList();
|
---|
169 |
|
---|
170 | foreach (var c in mutationChildren) {
|
---|
171 | if (c.Quality > averageQuality) {
|
---|
172 | aac++;
|
---|
173 | if (c.Parents.All(x => x.Quality > averageQuality))
|
---|
174 | aacp++;
|
---|
175 | }
|
---|
176 | }
|
---|
177 | var avgMutationImprovement = mutationChildren.Average(x => x.Quality - x.Parents.First().Quality);
|
---|
178 | var bestMutationImprovement = mutationChildren.Max(x => x.Quality - x.Parents.First().Quality);
|
---|
179 |
|
---|
180 | table.Rows["Average mutation improvement"].Values.Add(avgMutationImprovement);
|
---|
181 | table.Rows["Best mutation improvement"].Values.Add(bestMutationImprovement);
|
---|
182 | table.Rows["Above average children"].Values.Add(aac / populationSize);
|
---|
183 | table.Rows["Above average children from above average parents"].Values.Add(aacp / populationSize);
|
---|
184 | #endregion
|
---|
185 | return base.Apply();
|
---|
186 | }
|
---|
187 | }
|
---|
188 | }
|
---|