[11458] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 29 | using HeuristicLab.Optimization;
|
---|
| 30 | using HeuristicLab.Parameters;
|
---|
| 31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 32 | using DataRow = HeuristicLab.Analysis.DataRow;
|
---|
| 33 | using DataTable = HeuristicLab.Analysis.DataTable;
|
---|
| 34 |
|
---|
| 35 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Analyzers.BuidingBlocks {
|
---|
| 36 | [Item("Poly-10 building blocks analyzer", "An analyzer which attempts to identify parts of the Poly-10 formula")]
|
---|
| 37 | [StorableClass]
|
---|
[11493] | 38 | public class SymbolicDataAnalysisPoly10Analyzer : SymbolicDataAnalysisAnalyzer {
|
---|
[11458] | 39 | private const string SymbolicDataAnalysisTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
|
---|
| 40 | private const string ProblemDataParameterName = "ProblemData";
|
---|
| 41 | private const string GenerationsParameterName = "Generations";
|
---|
| 42 | private const string PhenotypicSimilarityThresholdParameterName = "PhenotypicSimilarityThreshold";
|
---|
| 43 | private const string UpdateCounterParameterName = "UpdateCounter";
|
---|
| 44 | private const string UpdateIntervalParameterName = "UpdateInterval";
|
---|
[11462] | 45 | private const string BuildingBlocksFrequenciesTableName = "Building blocks frequencies";
|
---|
[11458] | 46 |
|
---|
| 47 | // store evaluations of building blocks for phenotypic matching
|
---|
| 48 | private readonly Dictionary<string, List<double>> evaluationMap = new Dictionary<string, List<double>>();
|
---|
| 49 | private readonly Dictionary<string, ISymbolicExpressionTreeNode> fragmentMap = new Dictionary<string, ISymbolicExpressionTreeNode>();
|
---|
| 50 | private readonly Dictionary<string, string> prettyLabels = new Dictionary<string, string>();
|
---|
| 51 | private readonly SymbolicExpressionImporter importer = new SymbolicExpressionImporter();
|
---|
| 52 |
|
---|
| 53 | #region Parameters
|
---|
| 54 | public IValueParameter<DoubleValue> PhenotypicSimilarityThresholdParameter {
|
---|
| 55 | get { return (IValueParameter<DoubleValue>)Parameters[PhenotypicSimilarityThresholdParameterName]; }
|
---|
| 56 | }
|
---|
| 57 |
|
---|
| 58 | public ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter> SymbolicDataAnalysisTreeInterpreterParameter {
|
---|
| 59 | get { return (ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>)Parameters[SymbolicDataAnalysisTreeInterpreterParameterName]; }
|
---|
| 60 | }
|
---|
| 61 |
|
---|
| 62 | public ILookupParameter<IDataAnalysisProblemData> ProblemDataParameter {
|
---|
| 63 | get { return (ILookupParameter<IDataAnalysisProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
| 64 | }
|
---|
| 65 |
|
---|
| 66 | public ILookupParameter<IntValue> GenerationsParameter {
|
---|
| 67 | get { return (ILookupParameter<IntValue>)Parameters[GenerationsParameterName]; }
|
---|
| 68 | }
|
---|
| 69 |
|
---|
| 70 | public ValueParameter<IntValue> UpdateCounterParameter {
|
---|
| 71 | get { return (ValueParameter<IntValue>)Parameters[UpdateCounterParameterName]; }
|
---|
| 72 | }
|
---|
| 73 |
|
---|
| 74 | public ValueParameter<IntValue> UpdateIntervalParameter {
|
---|
| 75 | get { return (ValueParameter<IntValue>)Parameters[UpdateIntervalParameterName]; }
|
---|
| 76 | }
|
---|
| 77 | #endregion
|
---|
| 78 |
|
---|
| 79 | #region Parameter properties
|
---|
| 80 | public double PhenotypicSimilarityThreshold {
|
---|
| 81 | get { return PhenotypicSimilarityThresholdParameter.Value.Value; }
|
---|
| 82 | set { PhenotypicSimilarityThresholdParameter.Value.Value = value; }
|
---|
| 83 | }
|
---|
| 84 |
|
---|
| 85 | public int UpdateCounter {
|
---|
| 86 | get { return UpdateCounterParameter.Value.Value; }
|
---|
| 87 | set { UpdateCounterParameter.Value.Value = value; }
|
---|
| 88 | }
|
---|
| 89 |
|
---|
| 90 | public int UpdateInterval {
|
---|
| 91 | get { return UpdateIntervalParameter.Value.Value; }
|
---|
| 92 | set { UpdateIntervalParameter.Value.Value = value; }
|
---|
| 93 | }
|
---|
| 94 | #endregion
|
---|
| 95 |
|
---|
| 96 | public SymbolicDataAnalysisPoly10Analyzer() {
|
---|
| 97 | #region Add parameters
|
---|
| 98 | Parameters.Add(new LookupParameter<IDataAnalysisProblemData>(ProblemDataParameterName));
|
---|
| 99 | Parameters.Add(new LookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>(SymbolicDataAnalysisTreeInterpreterParameterName));
|
---|
| 100 | Parameters.Add(new LookupParameter<IntValue>(GenerationsParameterName));
|
---|
| 101 | Parameters.Add(new ValueParameter<DoubleValue>(PhenotypicSimilarityThresholdParameterName, "The phenotypic similarity threshold", new DoubleValue(0.9)));
|
---|
| 102 | Parameters.Add(new ValueParameter<IntValue>(UpdateCounterParameterName, new IntValue(0)));
|
---|
| 103 | Parameters.Add(new ValueParameter<IntValue>(UpdateIntervalParameterName, new IntValue(1)));
|
---|
| 104 | #endregion
|
---|
| 105 | }
|
---|
| 106 |
|
---|
| 107 | [StorableConstructor]
|
---|
| 108 | protected SymbolicDataAnalysisPoly10Analyzer(bool deserializing)
|
---|
| 109 | : base(deserializing) {
|
---|
| 110 | }
|
---|
| 111 |
|
---|
| 112 | protected SymbolicDataAnalysisPoly10Analyzer(SymbolicDataAnalysisPoly10Analyzer original, Cloner cloner)
|
---|
| 113 | : base(original, cloner) {
|
---|
| 114 | }
|
---|
| 115 |
|
---|
| 116 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 117 | return new SymbolicDataAnalysisPoly10Analyzer(this, cloner);
|
---|
| 118 | }
|
---|
| 119 |
|
---|
[11493] | 120 | new public bool EnabledByDefault {
|
---|
[11458] | 121 | get { return false; }
|
---|
| 122 | }
|
---|
| 123 |
|
---|
| 124 | public override IOperation Apply() {
|
---|
| 125 | #region Update counter & update interval
|
---|
| 126 | UpdateCounter++;
|
---|
| 127 | if (UpdateCounter != UpdateInterval) {
|
---|
| 128 | return base.Apply();
|
---|
| 129 | }
|
---|
| 130 | UpdateCounter = 0;
|
---|
| 131 | #endregion
|
---|
| 132 |
|
---|
| 133 | int generations = GenerationsParameter.ActualValue.Value;
|
---|
| 134 | if (generations == 0)
|
---|
| 135 | InitializeBuildingBlockCollection();
|
---|
| 136 |
|
---|
| 137 | var results = ResultCollectionParameter.ActualValue;
|
---|
| 138 | var trees = SymbolicExpressionTreeParameter.ActualValue;
|
---|
| 139 | var interpreter = (SymbolicDataAnalysisExpressionTreeLinearInterpreter)SymbolicDataAnalysisTreeInterpreterParameter.ActualValue;
|
---|
| 140 | var dataset = ProblemDataParameter.ActualValue.Dataset;
|
---|
| 141 | var rows = ProblemDataParameter.ActualValue.TrainingIndices.ToList();
|
---|
[12283] | 142 | var bbFrequencies = evaluationMap.Keys.ToDictionary(x => x, x => 0);
|
---|
[11458] | 143 |
|
---|
| 144 | foreach (var key in evaluationMap.Keys) {
|
---|
| 145 | var bb = fragmentMap[key];
|
---|
| 146 | int len = bb.GetLength();
|
---|
| 147 | foreach (var t in trees) {
|
---|
| 148 | var root = t.Root.GetSubtree(0).GetSubtree(0);
|
---|
| 149 | var nodes = root.IterateNodesPrefix().Where(x => x.GetLength() > len).ToList();
|
---|
| 150 |
|
---|
| 151 | for (int i = 0; i < nodes.Count; ++i) {
|
---|
| 152 | var s = nodes[i];
|
---|
| 153 | var values = interpreter.GetValues(s, dataset, rows);
|
---|
[12283] | 154 | OnlineCalculatorError error;
|
---|
[12891] | 155 | var r = OnlinePearsonsRCalculator.Calculate(values, evaluationMap[key], out error);
|
---|
| 156 | var r2 = error == OnlineCalculatorError.None ? r * r : double.NaN;
|
---|
| 157 | if (!double.IsNaN(r2) && r2 >= PhenotypicSimilarityThreshold) {
|
---|
[11458] | 158 | bbFrequencies[key]++;
|
---|
| 159 | i += s.GetLength();
|
---|
| 160 | }
|
---|
| 161 | }
|
---|
| 162 | }
|
---|
| 163 | }
|
---|
[11462] | 164 | var table = (DataTable)results[BuildingBlocksFrequenciesTableName].Value;
|
---|
[11458] | 165 | foreach (var pair in bbFrequencies) {
|
---|
[12283] | 166 | var formatter = new SymbolicExpressionTreeStringFormatter();
|
---|
| 167 | // var label = formatter.Format(fragmentMap[pair.Key]) + "(" + prettyLabels[pair.Key] + ")";
|
---|
[11458] | 168 | var label = prettyLabels[pair.Key];
|
---|
[12283] | 169 | if (table.Rows.ContainsKey(label)) {
|
---|
| 170 | var row = table.Rows[label];
|
---|
[12891] | 171 | row.Values.Add(pair.Value);
|
---|
[12283] | 172 | }
|
---|
[11458] | 173 | }
|
---|
| 174 |
|
---|
| 175 | return base.Apply();
|
---|
| 176 | }
|
---|
| 177 |
|
---|
| 178 | private void InitializeBuildingBlockCollection() {
|
---|
| 179 | #region Add building blocks
|
---|
| 180 | // building blocks
|
---|
| 181 | const string x1 = "(variable 1 X1)";
|
---|
| 182 | const string x2 = "(variable 1 X2)";
|
---|
| 183 | const string x3 = "(variable 1 X3)";
|
---|
| 184 | const string x4 = "(variable 1 X4)";
|
---|
| 185 | const string x5 = "(variable 1 X5)";
|
---|
| 186 | const string x6 = "(variable 1 X6)";
|
---|
| 187 | const string x7 = "(variable 1 X7)";
|
---|
[11461] | 188 | // x8 is never used in the formula
|
---|
| 189 | // const string x8 = "(variable 1 X8)";
|
---|
[11458] | 190 | const string x9 = "(variable 1 X9)";
|
---|
| 191 | const string x10 = "(variable 1 X10)";
|
---|
| 192 | string s1 = String.Format("(* {0} {1})", x1, x2);
|
---|
| 193 | string s2 = String.Format("(* {0} {1})", x3, x4);
|
---|
| 194 | string s3 = String.Format("(* {0} {1})", x5, x6);
|
---|
| 195 | string s4 = String.Format("(* (* {0} {1}) {2})", x1, x7, x9);
|
---|
| 196 | string s5 = String.Format("(* (* {0} {1}) {2})", x3, x6, x10);
|
---|
| 197 | string s6 = String.Format("(+ {0} {1})", s1, s2); // x1x2 + x3x4
|
---|
| 198 | string s7 = String.Format("(+ {0} {1})", s1, s3); // x1x2 + x5x6
|
---|
| 199 | string s8 = String.Format("(+ {0} {1})", s2, s3); // x3x4 + x5x6
|
---|
| 200 | string s9 = String.Format("(+ (+ {0} {1}) {2})", s1, s2, s3); // x1x2 + x3x4 + x5x6
|
---|
| 201 | string s10 = String.Format("(+ (+ {0} {1}) {2})", s4, s5, s9); // x1x2 + x3x4 + x5x6 + x1x7x9 + x3x6x10
|
---|
| 202 | prettyLabels[s1] = "X1*X2";
|
---|
| 203 | prettyLabels[s2] = "X3*X4";
|
---|
| 204 | prettyLabels[s3] = "X5*X6";
|
---|
| 205 | prettyLabels[s4] = "X1*X7*X9";
|
---|
| 206 | prettyLabels[s5] = "X3*X6*X10";
|
---|
| 207 | prettyLabels[s6] = prettyLabels[s1] + " + " + prettyLabels[s2];
|
---|
| 208 | prettyLabels[s7] = prettyLabels[s1] + " + " + prettyLabels[s3];
|
---|
| 209 | prettyLabels[s8] = prettyLabels[s2] + " + " + prettyLabels[s3];
|
---|
| 210 | prettyLabels[s9] = prettyLabels[s1] + " + " + prettyLabels[s2] + " + " + prettyLabels[s3];
|
---|
| 211 | prettyLabels[s10] = prettyLabels[s9] + " + " + prettyLabels[s4] + " + " + prettyLabels[s5];
|
---|
| 212 | #endregion
|
---|
| 213 | var interpreter = SymbolicDataAnalysisTreeInterpreterParameter.ActualValue;
|
---|
| 214 | var dataset = ProblemDataParameter.ActualValue.Dataset;
|
---|
| 215 | var rows = ProblemDataParameter.ActualValue.TrainingIndices.ToList();
|
---|
| 216 |
|
---|
[12318] | 217 | foreach (var s in new[] { s1, s2, s3, s4, s5, s6, s7, s8, s9, s10 }) {
|
---|
[11458] | 218 | if (evaluationMap.ContainsKey(s)) continue;
|
---|
| 219 | var t = importer.Import(s);
|
---|
| 220 | evaluationMap.Add(s, interpreter.GetSymbolicExpressionTreeValues(t, dataset, rows).ToList());
|
---|
| 221 | fragmentMap.Add(s, t.Root.GetSubtree(0).GetSubtree(0));
|
---|
| 222 | }
|
---|
| 223 |
|
---|
| 224 | var results = ResultCollectionParameter.ActualValue;
|
---|
| 225 | DataTable table;
|
---|
[11462] | 226 | if (!results.ContainsKey(BuildingBlocksFrequenciesTableName)) {
|
---|
| 227 | table = new DataTable(BuildingBlocksFrequenciesTableName);
|
---|
| 228 | results.Add(new Result(BuildingBlocksFrequenciesTableName, table));
|
---|
[11458] | 229 | } else {
|
---|
[11462] | 230 | table = (DataTable)results[BuildingBlocksFrequenciesTableName].Value;
|
---|
[11458] | 231 | }
|
---|
| 232 | table.Rows.Clear();
|
---|
| 233 | foreach (var key in evaluationMap.Keys) {
|
---|
[12283] | 234 | table.Rows.Add(new DataRow(prettyLabels[key]) { VisualProperties = { StartIndexZero = true } });
|
---|
[11458] | 235 | }
|
---|
| 236 | }
|
---|
| 237 | }
|
---|
| 238 | }
|
---|