1 | using System.Collections.Generic;
|
---|
2 | using System.Linq;
|
---|
3 | using HeuristicLab.Analysis;
|
---|
4 | using HeuristicLab.Common;
|
---|
5 | using HeuristicLab.Core;
|
---|
6 | using HeuristicLab.Data;
|
---|
7 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
8 | using HeuristicLab.Operators;
|
---|
9 | using HeuristicLab.Optimization;
|
---|
10 | using HeuristicLab.Parameters;
|
---|
11 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
12 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
13 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
|
---|
14 |
|
---|
15 | namespace HeuristicLab.EvolutionaryTracking.Analyzers.BuildingBlocks {
|
---|
16 | [StorableClass]
|
---|
17 | public class RelevantBuildingBlocksAnalyzer : SingleSuccessorOperator, IAnalyzer {
|
---|
18 | private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
|
---|
19 | private const string UpdateIntervalParameterName = "UpdateInterval";
|
---|
20 | private const string UpdateCounterParameterName = "UpdateCounter";
|
---|
21 | private const string ResultsParameterName = "Results";
|
---|
22 | private const string MatchVariablesParameterName = "MatchVariableNames";
|
---|
23 | private const string MatchVariableWeightsParameterName = "MatchVariableWeights";
|
---|
24 | private const string MatchConstantValuesParameterName = "MatchConstantValues";
|
---|
25 | private const string SymbolicExpressionTreeGrammarParameterName = "SymbolicExpressionTreeGrammar";
|
---|
26 | private const string ClonedSymbolicExpressionTreeGrammarParameterName = "ClonedSymbolicExpressionTreeGrammar";
|
---|
27 | private const string SymbolicRegressionSolutionParameterName = "SymbolicRegressionSolution";
|
---|
28 | private const string PopulationGraphParameterName = "PopulationGraph";
|
---|
29 | private const string FrequentFragmentsTableParameterName = "FrequentFragmentsTable";
|
---|
30 | private const string OccurrenceFrequencyTresholdParameterName = "OccurrenceThreshold";
|
---|
31 |
|
---|
32 | private readonly Dictionary<string, IFragment> foundFragments;
|
---|
33 |
|
---|
34 | #region Parameters
|
---|
35 | public ValueParameter<IntValue> UpdateIntervalParameter {
|
---|
36 | get { return (ValueParameter<IntValue>)Parameters[UpdateIntervalParameterName]; }
|
---|
37 | }
|
---|
38 |
|
---|
39 | public ValueParameter<IntValue> UpdateCounterParameter {
|
---|
40 | get { return (ValueParameter<IntValue>)Parameters[UpdateCounterParameterName]; }
|
---|
41 | }
|
---|
42 | public ValueParameter<DoubleValue> OccurrenceThresholdParameter {
|
---|
43 | get { return (ValueParameter<DoubleValue>)Parameters[OccurrenceFrequencyTresholdParameterName]; }
|
---|
44 | }
|
---|
45 | public LookupParameter<ResultCollection> ResultsParameter {
|
---|
46 | get { return (LookupParameter<ResultCollection>)Parameters[ResultsParameterName]; }
|
---|
47 | }
|
---|
48 | public IScopeTreeLookupParameter<ISymbolicExpressionTree> SymbolicExpressionTreeParameter {
|
---|
49 | get { return (IScopeTreeLookupParameter<ISymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
|
---|
50 | }
|
---|
51 | public ValueParameter<BoolValue> MatchVariableNamesParameter {
|
---|
52 | get { return (ValueParameter<BoolValue>)Parameters[MatchVariablesParameterName]; }
|
---|
53 | }
|
---|
54 | public ValueParameter<BoolValue> MatchVariableWeightsParameter {
|
---|
55 | get { return (ValueParameter<BoolValue>)Parameters[MatchVariableWeightsParameterName]; }
|
---|
56 | }
|
---|
57 | public ValueParameter<BoolValue> MatchConstantValuesParameter {
|
---|
58 | get { return (ValueParameter<BoolValue>)Parameters[MatchConstantValuesParameterName]; }
|
---|
59 | }
|
---|
60 | public IValueLookupParameter<ISymbolicExpressionGrammar> SymbolicExpressionTreeGrammarParameter {
|
---|
61 | get { return (IValueLookupParameter<ISymbolicExpressionGrammar>)Parameters[SymbolicExpressionTreeGrammarParameterName]; }
|
---|
62 | }
|
---|
63 | public ILookupParameter<ISymbolicExpressionGrammar> ClonedSymbolicExpressionTreeGrammarParameter {
|
---|
64 | get { return (ILookupParameter<ISymbolicExpressionGrammar>)Parameters[ClonedSymbolicExpressionTreeGrammarParameterName]; }
|
---|
65 | }
|
---|
66 | public ILookupParameter<ISymbolicRegressionSolution> SymbolicRegressionSolutionParameter {
|
---|
67 | get { return (ILookupParameter<ISymbolicRegressionSolution>)Parameters[SymbolicRegressionSolutionParameterName]; }
|
---|
68 | }
|
---|
69 | #endregion
|
---|
70 |
|
---|
71 | #region Parameter properties
|
---|
72 | public IntValue UpdateInterval {
|
---|
73 | get { return UpdateIntervalParameter.Value; }
|
---|
74 | }
|
---|
75 | public IntValue UpdateCounter {
|
---|
76 | get { return UpdateCounterParameter.Value; }
|
---|
77 | }
|
---|
78 | public DoubleValue OccurrenceThreshold {
|
---|
79 | get { return OccurrenceThresholdParameter.Value; }
|
---|
80 | }
|
---|
81 | public ResultCollection Results {
|
---|
82 | get { return ResultsParameter.ActualValue; }
|
---|
83 | }
|
---|
84 | public ItemArray<ISymbolicExpressionTree> SymbolicExpressionTrees {
|
---|
85 | get { return SymbolicExpressionTreeParameter.ActualValue; }
|
---|
86 | }
|
---|
87 | public ISymbolicExpressionGrammar SymbolicExpressionTreeGrammar {
|
---|
88 | get { return ClonedSymbolicExpressionTreeGrammarParameter.ActualValue; }
|
---|
89 | }
|
---|
90 | public ISymbolicRegressionSolution SymbolicRegressionSolution {
|
---|
91 | get { return SymbolicRegressionSolutionParameter.ActualValue; }
|
---|
92 | }
|
---|
93 | #endregion
|
---|
94 |
|
---|
95 | [StorableConstructor]
|
---|
96 | protected RelevantBuildingBlocksAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
97 |
|
---|
98 | public override IDeepCloneable Clone(Cloner cloner) { return new RelevantBuildingBlocksAnalyzer(this, cloner); }
|
---|
99 |
|
---|
100 | protected RelevantBuildingBlocksAnalyzer(RelevantBuildingBlocksAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
101 |
|
---|
102 | public RelevantBuildingBlocksAnalyzer() {
|
---|
103 | #region Parameters add
|
---|
104 | Parameters.Add(new ScopeTreeLookupParameter<ISymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic expression trees to analyze."));
|
---|
105 | Parameters.Add(new ValueParameter<IntValue>(UpdateIntervalParameterName, "The interval in which the tree length analysis should be applied.", new IntValue(1)));
|
---|
106 | Parameters.Add(new ValueParameter<IntValue>(UpdateCounterParameterName, "The value which counts how many times the operator was called since the last update", new IntValue(0)));
|
---|
107 | Parameters.Add(new ValueParameter<DoubleValue>(OccurrenceFrequencyTresholdParameterName, "The occurrence threshold for a fragment to be considered a frequenct fragment.", new DoubleValue(0.5)));
|
---|
108 | Parameters.Add(new ValueLookupParameter<ResultCollection>(ResultsParameterName, "The results collection where the analysis values should be stored."));
|
---|
109 | // matching predicates
|
---|
110 | Parameters.Add(new ValueParameter<BoolValue>(MatchVariablesParameterName, "Specify if the symbolic expression tree comparer should match variable names.", new BoolValue(true)));
|
---|
111 | Parameters.Add(new ValueParameter<BoolValue>(MatchVariableWeightsParameterName, "Specify if the symbolic expression tree comparer should match variable weights.", new BoolValue(true)));
|
---|
112 | Parameters.Add(new ValueParameter<BoolValue>(MatchConstantValuesParameterName, "Specify if the symbolic expression tree comparer should match constant values.", new BoolValue(true)));
|
---|
113 | Parameters.Add(new ValueLookupParameter<ISymbolicExpressionGrammar>(SymbolicExpressionTreeGrammarParameterName, "The tree grammar that defines the correct syntax of symbolic expression trees that should be created."));
|
---|
114 | Parameters.Add(new LookupParameter<ISymbolicExpressionGrammar>(ClonedSymbolicExpressionTreeGrammarParameterName, "An immutable clone of the concrete grammar that is actually used to create and manipulate trees."));
|
---|
115 | Parameters.Add(new LookupParameter<ISymbolicRegressionSolution>(SymbolicRegressionSolutionParameterName, "The symbolic regression solution."));
|
---|
116 | #endregion
|
---|
117 | foundFragments = new Dictionary<string, IFragment>();
|
---|
118 | }
|
---|
119 |
|
---|
120 | [StorableHook(HookType.AfterDeserialization)]
|
---|
121 | private void AfterDeserialization() {
|
---|
122 | }
|
---|
123 |
|
---|
124 | public override void ClearState() {
|
---|
125 | foundFragments.Clear();
|
---|
126 | base.InitializeState();
|
---|
127 | }
|
---|
128 |
|
---|
129 | public bool EnabledByDefault { get; private set; }
|
---|
130 |
|
---|
131 | public override IOperation Apply() {
|
---|
132 | UpdateCounter.Value++;
|
---|
133 | if (UpdateCounter.Value != UpdateInterval.Value) return base.Apply();
|
---|
134 | UpdateCounter.Value = 0;
|
---|
135 |
|
---|
136 | // if (SymbolicRegressionSolution == null) return base.Apply();
|
---|
137 |
|
---|
138 | var comparer = new SymbolicExpressionTreeNodeSimilarityComparer {
|
---|
139 | MatchConstantValues = MatchConstantValuesParameter.Value.Value,
|
---|
140 | MatchVariableNames = MatchVariableNamesParameter.Value.Value,
|
---|
141 | MatchVariableWeights = MatchVariableWeightsParameter.Value.Value
|
---|
142 | };
|
---|
143 |
|
---|
144 | var fragmentComparer = new SymbolicExpressionTreeFragmentSimilarityComparer { SimilarityComparer = comparer };
|
---|
145 |
|
---|
146 | // var bestIndividual = SymbolicRegressionSolution.Model.SymbolicExpressionTree;
|
---|
147 | var bestTrainingSolution = (ISymbolicRegressionSolution)Results["Best training solution"].Value;
|
---|
148 | var bestIndividual = bestTrainingSolution.Model.SymbolicExpressionTree;
|
---|
149 | var subtrees = bestIndividual.IterateNodesPrefix().Where(node => node.SubtreeCount > 0).Select((node, index) => new { Node = node, Index = index });
|
---|
150 | var frequentFragments = (from s in subtrees
|
---|
151 | let fragment = new Fragment { Root = s.Node, Index = s.Index }
|
---|
152 | let count = SymbolicExpressionTrees.Count(tree => tree.Root.ContainsFragment(fragment, comparer))
|
---|
153 | let frequency = (double)count / SymbolicExpressionTrees.Length
|
---|
154 | where frequency >= OccurrenceThreshold.Value
|
---|
155 | select fragment).Distinct(fragmentComparer).ToList();
|
---|
156 |
|
---|
157 | var graph = (SymbolicExpressionTreeGenealogyGraph)Results[PopulationGraphParameterName].Value;
|
---|
158 | DataTable table;
|
---|
159 |
|
---|
160 | if (!Results.ContainsKey(FrequentFragmentsTableParameterName)) {
|
---|
161 | table = new DataTable(FrequentFragmentsTableParameterName);
|
---|
162 | Results.Add(new Result(FrequentFragmentsTableParameterName, table));
|
---|
163 | } else {
|
---|
164 | table = (DataTable)Results[FrequentFragmentsTableParameterName].Value;
|
---|
165 | }
|
---|
166 |
|
---|
167 | foreach (var fragment in foundFragments.Values) {
|
---|
168 | var prefixString = fragment.Root.ToPrefixString();
|
---|
169 | double count = SymbolicExpressionTrees.Count(t => t.Root.ContainsFragment(fragment, comparer));
|
---|
170 | double frequency = count / SymbolicExpressionTrees.Length;
|
---|
171 | table.Rows[prefixString].Values.Add(frequency);
|
---|
172 | }
|
---|
173 |
|
---|
174 | var newFragments = frequentFragments.Where(f => !foundFragments.ContainsKey(f.Root.ToPrefixString())).ToList();
|
---|
175 | foreach (var fragment in newFragments) {
|
---|
176 | var prefixString = fragment.Root.ToPrefixString();
|
---|
177 | var row = new DataRow(prefixString);
|
---|
178 | row.Values.AddRange(from g in graph.Nodes.Where(n => n.Rank % 1 == 0).GroupBy(n => n.Rank)
|
---|
179 | let count = (double)g.Count(n => n.SymbolicExpressionTree.Root.ContainsFragment(fragment, comparer))
|
---|
180 | let frequency = count / SymbolicExpressionTrees.Length
|
---|
181 | select frequency);
|
---|
182 | foundFragments.Add(prefixString, fragment);
|
---|
183 | table.Rows.Add(row);
|
---|
184 | }
|
---|
185 |
|
---|
186 | return base.Apply();
|
---|
187 | }
|
---|
188 | }
|
---|
189 | }
|
---|