Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.DiversityAnalysis/HeuristicLab.Problems.TravelingSalesman/3.3/Analyzers/TSPPopulationDiversityAnalyzer.cs @ 4695

Last change on this file since 4695 was 4552, checked in by swinkler, 14 years ago

Minor update in diversity analyzer. (#1182)

File size: 9.9 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Linq;
24using HeuristicLab.Analysis;
25using HeuristicLab.Core;
26using HeuristicLab.Common;
27using HeuristicLab.Data;
28using HeuristicLab.Encodings.PermutationEncoding;
29using HeuristicLab.Operators;
30using HeuristicLab.Optimization;
31using HeuristicLab.Parameters;
32using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
33using System.Data;
34
35namespace HeuristicLab.Problems.TravelingSalesman {
36  /// <summary>
37  /// An operator for analyzing the diversity of a population of solutions for a Traveling Salesman Problems given in path representation using city coordinates.
38  /// </summary>
39  [Item("TSPPopulationDiversityAnalyzer", "An operator for analyzing the diversity of a population of solutions for a Traveling Salesman Problems given in path representation using city coordinates.")]
40  [StorableClass]
41  public sealed class TSPPopulationDiversityAnalyzer : SingleSuccessorOperator, IAnalyzer {
42
43    // TODO:
44    // - iterations sampling
45    // - view
46    // - extract population diversity basic behavior into separate project
47    // - analyze variation of values
48
49    public const string PermutationKey = "Permutation";
50    public ScopeTreeLookupParameter<Permutation> PermutationParameter {
51      get { return (ScopeTreeLookupParameter<Permutation>)Parameters[PermutationKey]; }
52    }
53    public const string QualityKey = "Quality";
54    public ScopeTreeLookupParameter<DoubleValue> QualityParameter {
55      get { return (ScopeTreeLookupParameter<DoubleValue>)Parameters[QualityKey]; }
56    }
57
58    public const string StoreCompleteHistoryKey = "StoreCompleteHistory";
59    public ValueParameter<BoolValue> StoreCompleteHistoryParameter {
60      get { return (ValueParameter<BoolValue>)Parameters[StoreCompleteHistoryKey]; }
61    }
62
63    public const string CurrentAverageSimilarityKey = "Current Average Population Similarity";
64    public const string AverageSimilarityProgressKey = "Average Population Similarity Progress";
65    public const string CurrentAverageMaximumSimilarityKey = "Current Average Maximum Population Similarity";
66    public const string AverageMaximumSimilarityProgressKey = "Average Maximum Population Similarity Progress";
67    public const string PopulationDiversityAnalysisResultsDetailsKey = "Population Diversity Analysis Results Details";
68
69    public const string ResultsKey = "Results";
70    public ValueLookupParameter<ResultCollection> ResultsParameter {
71      get { return (ValueLookupParameter<ResultCollection>)Parameters[ResultsKey]; }
72    }
73
74    public TSPPopulationDiversityAnalyzer()
75      : base() {
76      Parameters.Add(new ScopeTreeLookupParameter<Permutation>(PermutationKey, "The TSP solutions given in path representation from which the best solution should be analyzed."));
77      Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>(QualityKey, "The qualities of the TSP solutions which should be analyzed."));
78      Parameters.Add(new ValueParameter<BoolValue>(StoreCompleteHistoryKey, "Flag that denotes whether the complete history of similarity values shall be stored.", new BoolValue(true)));
79      Parameters.Add(new ValueLookupParameter<ResultCollection>("Results", "The results collection in which the population diversity analysis results should be stored."));
80    }
81
82    public override IOperation Apply() {
83
84      ItemArray<Permutation> permutations = PermutationParameter.ActualValue;
85      ItemArray<DoubleValue> qualities = QualityParameter.ActualValue;
86      Permutation[] permutationsArray = permutations.ToArray();
87      DoubleValue[] qualitiesArray = qualities.ToArray();
88      int cities = permutationsArray.Length;
89      ResultCollection results = ResultsParameter.ActualValue;
90
91      #region sort permutations array
92      for (int i = 0; i < cities; i++) {
93        int minIndex = i;
94        for (int j = i + 1; j < cities; j++) {
95          if (qualitiesArray[j].Value < qualitiesArray[minIndex].Value)
96            minIndex = j;
97        }
98        if (minIndex != i) {
99          Permutation p = permutationsArray[i];
100          permutationsArray[i] = permutationsArray[minIndex];
101          permutationsArray[minIndex] = p;
102          DoubleValue d = qualitiesArray[i];
103          qualitiesArray[i] = qualitiesArray[minIndex];
104          qualitiesArray[minIndex] = d;
105        }
106      }
107      #endregion
108
109      int[][] edges = new int[cities][];
110      for (int i = 0; i < cities; i++)
111        edges[i] = CalculateEdgesVector(permutationsArray[i]);
112
113      DoubleMatrix similarities = new DoubleMatrix(cities, cities);
114      DoubleArray maxSimilarities = new DoubleArray(cities);
115      double avgSimilarity = 0;
116      int n = 0;
117      for (int i = 0; i < cities; i++) {
118        similarities[i, i] = 1;
119        for (int j = (i + 1); j < cities; j++) {
120          double similarity = CalculateSimilarity(edges[i], edges[j]);
121          avgSimilarity += similarity;
122          n++;
123          similarities[i, j] = similarity;
124          similarities[j, i] = similarity;
125          if (maxSimilarities[i] < similarity)
126            maxSimilarities[i] = similarity;
127          if (maxSimilarities[j] < similarity)
128            maxSimilarities[j] = similarity;
129        }
130      }
131      DoubleValue averageMaximumSimilarity = new DoubleValue(maxSimilarities.Average());
132      DoubleValue averageSimilarity = new DoubleValue(avgSimilarity / n);
133
134      #region Store average similarity values
135      if (results.ContainsKey(CurrentAverageSimilarityKey))
136        results[CurrentAverageSimilarityKey].Value = averageSimilarity;
137      else
138        results.Add(new Result(CurrentAverageSimilarityKey, averageSimilarity));
139
140      if (!results.ContainsKey(AverageSimilarityProgressKey))
141        results.Add(new Result(AverageSimilarityProgressKey, new Analysis.DataTable(AverageSimilarityProgressKey)));
142      Analysis.DataTable averageSimilarityProgressDataTable = (Analysis.DataTable)(results[AverageSimilarityProgressKey].Value);
143      if (averageSimilarityProgressDataTable.Rows.Count == 0)
144        averageSimilarityProgressDataTable.Rows.Add(new Analysis.DataRow(AverageSimilarityProgressKey));
145      averageSimilarityProgressDataTable.Rows[AverageSimilarityProgressKey].Values.Add(averageSimilarity.Value);
146      #endregion
147      #region Store average maximum similarity values
148      if (results.ContainsKey(CurrentAverageMaximumSimilarityKey))
149        results[CurrentAverageMaximumSimilarityKey].Value = averageMaximumSimilarity;
150      else
151        results.Add(new Result(CurrentAverageMaximumSimilarityKey, averageMaximumSimilarity));
152
153      if (!results.ContainsKey(AverageMaximumSimilarityProgressKey))
154        results.Add(new Result(AverageMaximumSimilarityProgressKey, new Analysis.DataTable(AverageMaximumSimilarityProgressKey)));
155      Analysis.DataTable averageMaximumSimilarityProgressDataTable = (Analysis.DataTable)(results[AverageMaximumSimilarityProgressKey].Value);
156      if (averageMaximumSimilarityProgressDataTable.Rows.Count == 0)
157        averageMaximumSimilarityProgressDataTable.Rows.Add(new Analysis.DataRow(AverageMaximumSimilarityProgressKey));
158      averageMaximumSimilarityProgressDataTable.Rows[AverageMaximumSimilarityProgressKey].Values.Add(averageMaximumSimilarity.Value);
159      #endregion
160      #region Store details
161      TSPPopulationDiversityAnalysisDetails details;
162      if (!results.ContainsKey(PopulationDiversityAnalysisResultsDetailsKey)) {
163        details = new TSPPopulationDiversityAnalysisDetails();
164        results.Add(new Result(PopulationDiversityAnalysisResultsDetailsKey, details));
165      } else {
166        details = (TSPPopulationDiversityAnalysisDetails)(results[PopulationDiversityAnalysisResultsDetailsKey].Value);
167      }
168      details.AverageSimilarities.Add(averageSimilarity);
169      details.AverageMaximumSimilarities.Add(averageMaximumSimilarity);
170      details.Similarities.Add(similarities);
171      details.MaximumSimilarities.Add(maxSimilarities);
172      if (!StoreCompleteHistoryParameter.Value.Value && details.Similarities.Count > 1) {
173        details.Similarities[details.Similarities.Count - 1] = null;
174        details.MaximumSimilarities[details.MaximumSimilarities.Count - 1] = null;
175      }
176      #endregion
177
178      return base.Apply();
179    }
180
181    private static int[] CalculateEdgesVector(Permutation permutation) {
182      int cities = permutation.Length;
183      int[] edgesVector = new int[cities];
184      for (int i = 0; i < (cities - 1); i++)
185        edgesVector[permutation[i]] = permutation[i + 1];
186      edgesVector[permutation[cities - 1]] = permutation[0];
187      return edgesVector;
188    }
189
190    private double CalculateSimilarity(int[] edgesA, int[] edgesB) {
191      if (edgesA.Length != edgesB.Length)
192        throw new InvalidOperationException("ERROR in " + Name + ": Similarity can only be calculated between instances of an equal number of cities");
193      int cities = edgesA.Length;
194      int similarEdges = 0;
195      for (int i = 0; i < edgesA.Length; i++) {
196        if (edgesA[i] == edgesB[i] || edgesA[edgesB[i]] == i)
197          similarEdges++;
198      }
199      return (double)(similarEdges) / cities;
200    }
201
202  }
203}
Note: See TracBrowser for help on using the repository browser.