Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.DatasetRefactor/sources/HeuristicLab.Problems.QuadraticAssignment/3.3/LocalImprovement/QAPStochasticScrambleLocalImprovement.cs @ 12012

Last change on this file since 12012 was 11300, checked in by pfleck, 10 years ago

#2232
Introduced ILocalImprovementAlgorithmOperator to separate single operators for local improvement and operator graphs/algorithms for local improvement.
This way the ILocalImprovementOperator does not have to specify a problem type and does not store a problem any more.

The LocalSearchImprovementOperator and SimulatedAnnealingImprovementOperator implement the new ILocalImprovementAlgorithmOperator as they represent an operator graph for local improvement.
The QAP and VRP local improvement operators implement the ILocalImprovementOperator which does not store a problem anymore.

File size: 7.6 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Threading;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using HeuristicLab.Encodings.PermutationEncoding;
28using HeuristicLab.Operators;
29using HeuristicLab.Optimization;
30using HeuristicLab.Parameters;
31using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
32
33namespace HeuristicLab.Problems.QuadraticAssignment {
34  [Item("QAPStochasticScrambleLocalImprovement", "Takes a solution and finds the local optimum with respect to the scramble neighborhood by decending along the steepest gradient.")]
35  [StorableClass]
36  public class QAPStochasticScrambleLocalImprovement : SingleSuccessorOperator, ILocalImprovementOperator, IStochasticOperator {
37
38    public ILookupParameter<IntValue> LocalIterationsParameter {
39      get { return (ILookupParameter<IntValue>)Parameters["LocalIterations"]; }
40    }
41
42    public ILookupParameter<IRandom> RandomParameter {
43      get { return (ILookupParameter<IRandom>)Parameters["Random"]; }
44    }
45
46    public IValueLookupParameter<IntValue> MaximumIterationsParameter {
47      get { return (IValueLookupParameter<IntValue>)Parameters["MaximumIterations"]; }
48    }
49
50    public ILookupParameter<IntValue> EvaluatedSolutionsParameter {
51      get { return (ILookupParameter<IntValue>)Parameters["EvaluatedSolutions"]; }
52    }
53
54    public ILookupParameter<ResultCollection> ResultsParameter {
55      get { return (ILookupParameter<ResultCollection>)Parameters["Results"]; }
56    }
57
58    public ILookupParameter<Permutation> AssignmentParameter {
59      get { return (ILookupParameter<Permutation>)Parameters["Assignment"]; }
60    }
61
62    public ILookupParameter<DoubleValue> QualityParameter {
63      get { return (ILookupParameter<DoubleValue>)Parameters["Quality"]; }
64    }
65
66    public ILookupParameter<BoolValue> MaximizationParameter {
67      get { return (ILookupParameter<BoolValue>)Parameters["Maximization"]; }
68    }
69
70    public ILookupParameter<DoubleMatrix> WeightsParameter {
71      get { return (ILookupParameter<DoubleMatrix>)Parameters["Weights"]; }
72    }
73
74    public ILookupParameter<DoubleMatrix> DistancesParameter {
75      get { return (ILookupParameter<DoubleMatrix>)Parameters["Distances"]; }
76    }
77
78    public IValueLookupParameter<IntValue> NeighborhoodSizeParameter {
79      get { return (IValueLookupParameter<IntValue>)Parameters["NeighborhoodSize"]; }
80    }
81
82    [StorableConstructor]
83    protected QAPStochasticScrambleLocalImprovement(bool deserializing) : base(deserializing) { }
84    protected QAPStochasticScrambleLocalImprovement(QAPStochasticScrambleLocalImprovement original, Cloner cloner)
85      : base(original, cloner) {
86    }
87    public QAPStochasticScrambleLocalImprovement()
88      : base() {
89      Parameters.Add(new LookupParameter<IntValue>("LocalIterations", "The number of iterations that have already been performed."));
90      Parameters.Add(new LookupParameter<IRandom>("Random", "The random number generator to use."));
91      Parameters.Add(new ValueLookupParameter<IntValue>("MaximumIterations", "The maximum amount of iterations that should be performed (note that this operator will abort earlier when a local optimum is reached).", new IntValue(10000)));
92      Parameters.Add(new LookupParameter<IntValue>("EvaluatedSolutions", "The amount of evaluated solutions (here a move is counted only as 4/n evaluated solutions with n being the length of the permutation)."));
93      Parameters.Add(new LookupParameter<ResultCollection>("Results", "The collection where to store results."));
94      Parameters.Add(new LookupParameter<Permutation>("Assignment", "The permutation that is to be locally optimized."));
95      Parameters.Add(new LookupParameter<DoubleValue>("Quality", "The quality value of the assignment."));
96      Parameters.Add(new LookupParameter<BoolValue>("Maximization", "True if the problem should be maximized or minimized."));
97      Parameters.Add(new LookupParameter<DoubleMatrix>("Weights", "The weights matrix."));
98      Parameters.Add(new LookupParameter<DoubleMatrix>("Distances", "The distances matrix."));
99      Parameters.Add(new ValueLookupParameter<IntValue>("NeighborhoodSize", "The number of moves to sample from the neighborhood.", new IntValue(100)));
100    }
101
102    public override IDeepCloneable Clone(Cloner cloner) {
103      return new QAPStochasticScrambleLocalImprovement(this, cloner);
104    }
105
106    public static void Improve(IRandom random, Permutation assignment, DoubleMatrix weights, DoubleMatrix distances, DoubleValue quality, IntValue localIterations, IntValue evaluatedSolutions, bool maximization, int maxIterations, int neighborhoodSize, CancellationToken cancellation) {
107      for (int i = localIterations.Value; i < maxIterations; i++) {
108        ScrambleMove bestMove = null;
109        double bestQuality = 0; // we have to make an improvement, so 0 is the baseline
110        double evaluations = 0.0;
111        for (int j = 0; j < neighborhoodSize; j++) {
112          var move = StochasticScrambleMultiMoveGenerator.GenerateRandomMove(assignment, random);
113          double moveQuality = QAPScrambleMoveEvaluator.Apply(assignment, move, weights, distances);
114          evaluations += 2.0 * move.ScrambledIndices.Length / assignment.Length;
115          if (maximization && moveQuality > bestQuality
116            || !maximization && moveQuality < bestQuality) {
117            bestQuality = moveQuality;
118            bestMove = move;
119          }
120        }
121        evaluatedSolutions.Value = (int)Math.Ceiling(evaluations);
122        if (bestMove == null) break;
123        ScrambleManipulator.Apply(assignment, bestMove.StartIndex, bestMove.ScrambledIndices);
124        quality.Value += bestQuality;
125        localIterations.Value++;
126        cancellation.ThrowIfCancellationRequested();
127      }
128    }
129
130    public override IOperation Apply() {
131      var random = RandomParameter.ActualValue;
132      var maxIterations = MaximumIterationsParameter.ActualValue.Value;
133      var neighborhoodSize = NeighborhoodSizeParameter.ActualValue.Value;
134      var assignment = AssignmentParameter.ActualValue;
135      var maximization = MaximizationParameter.ActualValue.Value;
136      var weights = WeightsParameter.ActualValue;
137      var distances = DistancesParameter.ActualValue;
138      var quality = QualityParameter.ActualValue;
139      var localIterations = LocalIterationsParameter.ActualValue;
140      var evaluations = EvaluatedSolutionsParameter.ActualValue;
141      if (localIterations == null) {
142        localIterations = new IntValue(0);
143        LocalIterationsParameter.ActualValue = localIterations;
144      }
145
146      Improve(random, assignment, weights, distances, quality, localIterations, evaluations, maximization, maxIterations, neighborhoodSize, CancellationToken);
147
148      localIterations.Value = 0;
149      return base.Apply();
150    }
151  }
152}
Note: See TracBrowser for help on using the repository browser.