[6134] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[9615] | 3 | * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[6134] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[6133] | 22 | using System.Collections.Generic;
|
---|
[9614] | 23 | using HeuristicLab.DataImporter.Command.View;
|
---|
[6133] | 24 | using HeuristicLab.DataImporter.Data;
|
---|
| 25 | using HeuristicLab.DataImporter.Data.CommandBase;
|
---|
| 26 | using HeuristicLab.DataImporter.Data.Model;
|
---|
| 27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 28 |
|
---|
| 29 | namespace HeuristicLab.DataImporter.Command {
|
---|
| 30 | [StorableClass]
|
---|
| 31 | [ViewableCommandInfoAttribute("Scale to normal distribution", 1, ColumnGroupState.DoubleColumnSelected, "Change Values",
|
---|
| 32 | Position = 5, OptionsView = typeof(NormalDistributionCommandView))]
|
---|
| 33 | public class NormalDistributionScalingCommand : ColumnGroupCommandWithAffectedColumnsBase {
|
---|
| 34 | private List<KeyValuePair<double, double>> oldNormalDistribution;
|
---|
| 35 |
|
---|
[9614] | 36 | [StorableConstructor]
|
---|
| 37 | protected NormalDistributionScalingCommand(bool deserializing)
|
---|
| 38 | : base(deserializing) {
|
---|
[6133] | 39 | oldNormalDistribution = new List<KeyValuePair<double, double>>();
|
---|
| 40 | }
|
---|
| 41 |
|
---|
| 42 | public NormalDistributionScalingCommand(DataSet dataSet, string columnGroupName, int[] affectedColumns)
|
---|
| 43 | : base(dataSet, columnGroupName, affectedColumns) {
|
---|
| 44 | oldNormalDistribution = new List<KeyValuePair<double, double>>();
|
---|
| 45 | }
|
---|
| 46 |
|
---|
| 47 | public override string Description {
|
---|
| 48 | get { return "Scale to normal distribution"; }
|
---|
| 49 | }
|
---|
| 50 |
|
---|
| 51 | [Storable]
|
---|
| 52 | private double newMean;
|
---|
| 53 | public double Mean {
|
---|
| 54 | get { return this.newMean; }
|
---|
| 55 | set { this.newMean = value; }
|
---|
| 56 | }
|
---|
| 57 |
|
---|
| 58 | [Storable]
|
---|
| 59 | private double newStddev;
|
---|
| 60 | public double StandardDeviation {
|
---|
| 61 | get { return this.newStddev; }
|
---|
| 62 | set { this.newStddev = value; }
|
---|
| 63 | }
|
---|
| 64 |
|
---|
| 65 | public override void Execute() {
|
---|
| 66 | base.Execute();
|
---|
| 67 | DoubleColumn column;
|
---|
| 68 | double oldMean;
|
---|
| 69 | double oldStddev;
|
---|
| 70 | for (int i = 0; i < AffectedColumns.Length; i++) {
|
---|
| 71 | if (ColumnGroup.GetColumn(AffectedColumns[i]) is DoubleColumn) {
|
---|
| 72 | column = (DoubleColumn)ColumnGroup.GetColumn(AffectedColumns[i]);
|
---|
| 73 | if (column.NonNullValuesCount == 0)
|
---|
| 74 | continue;
|
---|
| 75 | oldMean = (double)column.Mean;
|
---|
| 76 | oldStddev = (double)column.StandardDeviation;
|
---|
| 77 | CalculateNewColumn(column, newMean, newStddev, oldMean, oldStddev);
|
---|
| 78 | oldNormalDistribution.Add(new KeyValuePair<double, double>(oldMean, oldStddev));
|
---|
| 79 | }
|
---|
| 80 | }
|
---|
| 81 | ColumnGroup.FireChanged();
|
---|
| 82 | ColumnGroup = null;
|
---|
| 83 | }
|
---|
| 84 |
|
---|
| 85 | public override void UndoExecute() {
|
---|
| 86 | base.UndoExecute();
|
---|
| 87 | DoubleColumn column;
|
---|
| 88 | double oldMean;
|
---|
| 89 | double oldStddev;
|
---|
| 90 | int j = 0;
|
---|
| 91 | for (int i = 0; i < AffectedColumns.Length; i++) {
|
---|
| 92 | if (ColumnGroup.GetColumn(AffectedColumns[i]) is DoubleColumn) {
|
---|
| 93 | column = (DoubleColumn)ColumnGroup.GetColumn(AffectedColumns[i]);
|
---|
| 94 | if (column.NonNullValuesCount == 0)
|
---|
| 95 | continue;
|
---|
| 96 | oldMean = oldNormalDistribution[j].Key;
|
---|
| 97 | oldStddev = oldNormalDistribution[j].Value;
|
---|
| 98 | CalculateNewColumn(column, oldMean, oldStddev, newMean, newStddev);
|
---|
| 99 | j++;
|
---|
| 100 | }
|
---|
| 101 | }
|
---|
| 102 | oldNormalDistribution.Clear();
|
---|
| 103 | ColumnGroup.FireChanged();
|
---|
| 104 | ColumnGroup = null;
|
---|
| 105 |
|
---|
| 106 | }
|
---|
| 107 |
|
---|
| 108 | private void CalculateNewColumn(DoubleColumn column, double newMean, double newStddev, double oldMean, double oldStddev) {
|
---|
| 109 | double newValue;
|
---|
| 110 | double oldValue;
|
---|
| 111 | for (int val = 0; val < column.TotalValuesCount; val++) {
|
---|
| 112 | if (column.GetValue(val) == null)
|
---|
| 113 | continue;
|
---|
| 114 | oldValue = (double)column.GetValue(val);
|
---|
| 115 | if (oldStddev == 0)
|
---|
| 116 | newValue = oldValue - oldMean + newMean;
|
---|
| 117 | else
|
---|
| 118 | newValue = ((oldValue - oldMean) / oldStddev) * newStddev + newMean;
|
---|
| 119 | column.ChangeValue(val, newValue);
|
---|
| 120 | }
|
---|
| 121 | }
|
---|
| 122 | }
|
---|
| 123 | }
|
---|