[9271] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using HeuristicLab.Common;
|
---|
| 24 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 25 |
|
---|
| 26 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
| 27 | public abstract class SymbolicDataAnalysisSolutionValuesCalculator {
|
---|
| 28 | protected readonly ISymbolicExpressionTree tempTree;
|
---|
| 29 | protected readonly ConstantTreeNode constantNode;
|
---|
| 30 |
|
---|
| 31 | public SymbolicDataAnalysisSolutionValuesCalculator() {
|
---|
| 32 | constantNode = ((ConstantTreeNode)new Constant().CreateTreeNode());
|
---|
| 33 | ISymbolicExpressionTreeNode root = new ProgramRootSymbol().CreateTreeNode();
|
---|
| 34 | ISymbolicExpressionTreeNode start = new StartSymbol().CreateTreeNode();
|
---|
| 35 | root.AddSubtree(start);
|
---|
| 36 | tempTree = new SymbolicExpressionTree(root);
|
---|
| 37 | }
|
---|
| 38 |
|
---|
| 39 | // should be moved to an interface, then un-abstract the class
|
---|
| 40 | public abstract Dictionary<ISymbolicExpressionTreeNode, double> CalculateReplacementValues(ISymbolicExpressionTree tree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, IDataAnalysisProblemData problemData);
|
---|
| 41 | public abstract Dictionary<ISymbolicExpressionTreeNode, double> CalculateImpactValues(ISymbolicExpressionTree tree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, IDataAnalysisProblemData problemData, double lowerEstimationLimit, double upperEstimationLimit);
|
---|
| 42 |
|
---|
| 43 | protected void SwitchNode(ISymbolicExpressionTreeNode root, ISymbolicExpressionTreeNode oldBranch, ISymbolicExpressionTreeNode newBranch) {
|
---|
| 44 | for (int i = 0; i < root.SubtreeCount; i++) {
|
---|
| 45 | if (root.GetSubtree(i) == oldBranch) {
|
---|
| 46 | root.RemoveSubtree(i);
|
---|
| 47 | root.InsertSubtree(i, newBranch);
|
---|
| 48 | return;
|
---|
| 49 | }
|
---|
| 50 | }
|
---|
| 51 | }
|
---|
| 52 |
|
---|
| 53 | protected double CalculateReplacementValue(ISymbolicExpressionTreeNode node, ISymbolicExpressionTree sourceTree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, IDataAnalysisProblemData problemData) {
|
---|
| 54 | // remove old ADFs
|
---|
| 55 | while (tempTree.Root.SubtreeCount > 1) tempTree.Root.RemoveSubtree(1);
|
---|
| 56 | // clone ADFs of source tree
|
---|
| 57 | for (int i = 1; i < sourceTree.Root.SubtreeCount; i++) {
|
---|
| 58 | tempTree.Root.AddSubtree((ISymbolicExpressionTreeNode)sourceTree.Root.GetSubtree(i).Clone());
|
---|
| 59 | }
|
---|
| 60 | var start = tempTree.Root.GetSubtree(0);
|
---|
| 61 | while (start.SubtreeCount > 0) start.RemoveSubtree(0);
|
---|
| 62 | start.AddSubtree((ISymbolicExpressionTreeNode)node.Clone());
|
---|
| 63 | var rows = problemData.TrainingIndices;
|
---|
| 64 | return interpreter.GetSymbolicExpressionTreeValues(tempTree, problemData.Dataset, rows).Median();
|
---|
| 65 | }
|
---|
| 66 | }
|
---|
| 67 | }
|
---|