1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Diagnostics;
|
---|
25 | using System.Linq;
|
---|
26 | using System.Threading;
|
---|
27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
28 | using HeuristicLab.Random;
|
---|
29 | using HeuristicLab.Core;
|
---|
30 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
31 | using ExecutionContext = HeuristicLab.Core.ExecutionContext;
|
---|
32 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
|
---|
33 |
|
---|
34 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Tests {
|
---|
35 | [TestClass()]
|
---|
36 | public class SymbolicDataAnalysisExpressionCrossoverTest {
|
---|
37 | private const int PopulationSize = 10000;
|
---|
38 | private const int MaxTreeDepth = 10;
|
---|
39 | private const int MaxTreeLength = 100;
|
---|
40 | private const int Rows = 1000;
|
---|
41 | private const int Columns = 50;
|
---|
42 |
|
---|
43 | /// <summary>
|
---|
44 | ///Gets or sets the test context which provides
|
---|
45 | ///information about and functionality for the current test run.
|
---|
46 | ///</summary>
|
---|
47 | public TestContext TestContext { get; set; }
|
---|
48 |
|
---|
49 | [TestMethod]
|
---|
50 | public void SymbolicDataAnalysisExpressionSemanticSimilarityCrossoverPerformanceTest() {
|
---|
51 | SemanticSimilarityCrossoverPerformanceTest();
|
---|
52 | }
|
---|
53 |
|
---|
54 | [TestMethod]
|
---|
55 | public void SymbolicDataAnalysisExpressionProbabilisticFunctionalCrossoverPerformanceTest() {
|
---|
56 | ProbabilisticFunctionalCrossoverPerformanceTest();
|
---|
57 | }
|
---|
58 |
|
---|
59 | [TestMethod]
|
---|
60 | public void SymbolicDataAnalysisExpressionDeterministicBestCrossoverPerformanceTest() {
|
---|
61 | DeterministicBestCrossoverPerformanceTest();
|
---|
62 | }
|
---|
63 |
|
---|
64 | [TestMethod]
|
---|
65 | public void SymbolicDataAnalysisExpressionContextAwareCrossoverPerformanceTest() {
|
---|
66 | ContextAwareCrossoverPerformanceTest();
|
---|
67 | }
|
---|
68 |
|
---|
69 | [TestMethod]
|
---|
70 | public void SymbolicDataAnalysisExpressionDepthConstrainedCrossoverPerformanceTest() {
|
---|
71 | DepthConstrainedCrossoverPerformanceTest();
|
---|
72 | }
|
---|
73 |
|
---|
74 | private static void DepthConstrainedCrossoverPerformanceTest() {
|
---|
75 | var twister = new MersenneTwister(31415);
|
---|
76 | var dataset = Util.CreateRandomDataset(twister, Rows, Columns);
|
---|
77 | var grammar = new FullFunctionalExpressionGrammar();
|
---|
78 | var stopwatch = new Stopwatch();
|
---|
79 |
|
---|
80 | grammar.MaximumFunctionArguments = 0;
|
---|
81 | grammar.MaximumFunctionDefinitions = 0;
|
---|
82 | grammar.MinimumFunctionArguments = 0;
|
---|
83 | grammar.MinimumFunctionDefinitions = 0;
|
---|
84 |
|
---|
85 | var trees = Util.CreateRandomTrees(twister, dataset, grammar, PopulationSize, 1, MaxTreeLength, 0, 0);
|
---|
86 | foreach (ISymbolicExpressionTree tree in trees) {
|
---|
87 | Util.InitTree(tree, twister, new List<string>(dataset.VariableNames));
|
---|
88 | }
|
---|
89 | var problemData = new RegressionProblemData(dataset, dataset.VariableNames, dataset.VariableNames.Last());
|
---|
90 | var problem = new SymbolicRegressionSingleObjectiveProblem();
|
---|
91 | problem.ProblemData = problemData;
|
---|
92 |
|
---|
93 | var crossover = problem.OperatorsParameter.Value.OfType<SymbolicDataAnalysisExpressionDepthConstrainedCrossover<IRegressionProblemData>>().First();
|
---|
94 | //crossover.DepthRange.Value = "HighLevel";
|
---|
95 | //crossover.DepthRange.Value = "Standard";
|
---|
96 | crossover.DepthRange.Value = "LowLevel";
|
---|
97 |
|
---|
98 | var globalScope = new Scope("Global Scope");
|
---|
99 | globalScope.Variables.Add(new Core.Variable("Random", twister));
|
---|
100 | var context = new ExecutionContext(null, problem, globalScope);
|
---|
101 | context = new ExecutionContext(context, crossover, globalScope);
|
---|
102 |
|
---|
103 | stopwatch.Start();
|
---|
104 | for (int i = 0; i != PopulationSize; ++i) {
|
---|
105 | var parent0 = (ISymbolicExpressionTree)trees.SelectRandom(twister).Clone();
|
---|
106 | var scopeParent0 = new Scope();
|
---|
107 | scopeParent0.Variables.Add(new Core.Variable(crossover.ParentsParameter.ActualName, parent0));
|
---|
108 | context.Scope.SubScopes.Add(scopeParent0);
|
---|
109 |
|
---|
110 | var parent1 = (ISymbolicExpressionTree)trees.SelectRandom(twister).Clone();
|
---|
111 | var scopeParent1 = new Scope();
|
---|
112 | scopeParent1.Variables.Add(new Core.Variable(crossover.ParentsParameter.ActualName, parent1));
|
---|
113 | context.Scope.SubScopes.Add(scopeParent1);
|
---|
114 |
|
---|
115 | crossover.Execute(context, new CancellationToken());
|
---|
116 |
|
---|
117 | context.Scope.SubScopes.Remove(scopeParent0); // clean the scope in preparation for the next iteration
|
---|
118 | context.Scope.SubScopes.Remove(scopeParent1); // clean the scope in preparation for the next iteration
|
---|
119 | }
|
---|
120 | stopwatch.Stop();
|
---|
121 | double msPerCrossover = 2 * stopwatch.ElapsedMilliseconds / (double)PopulationSize;
|
---|
122 | Console.WriteLine("DepthConstrainedCrossover: " + Environment.NewLine +
|
---|
123 | msPerCrossover + " ms per crossover (~" + Math.Round(1000.0 / (msPerCrossover)) + " crossover operations / s)");
|
---|
124 |
|
---|
125 | foreach (var tree in trees)
|
---|
126 | Util.IsValid(tree);
|
---|
127 | }
|
---|
128 |
|
---|
129 | private static void SemanticSimilarityCrossoverPerformanceTest() {
|
---|
130 | var twister = new MersenneTwister(31415);
|
---|
131 | var dataset = Util.CreateRandomDataset(twister, Rows, Columns);
|
---|
132 | var grammar = new FullFunctionalExpressionGrammar();
|
---|
133 | var stopwatch = new Stopwatch();
|
---|
134 |
|
---|
135 | grammar.MaximumFunctionArguments = 0;
|
---|
136 | grammar.MaximumFunctionDefinitions = 0;
|
---|
137 | grammar.MinimumFunctionArguments = 0;
|
---|
138 | grammar.MinimumFunctionDefinitions = 0;
|
---|
139 |
|
---|
140 | var trees = Util.CreateRandomTrees(twister, dataset, grammar, PopulationSize, 1, MaxTreeLength, 0, 0);
|
---|
141 | foreach (ISymbolicExpressionTree tree in trees) {
|
---|
142 | Util.InitTree(tree, twister, new List<string>(dataset.VariableNames));
|
---|
143 | }
|
---|
144 | var problemData = new RegressionProblemData(dataset, dataset.VariableNames, dataset.VariableNames.Last());
|
---|
145 | var problem = new SymbolicRegressionSingleObjectiveProblem();
|
---|
146 | problem.ProblemData = problemData;
|
---|
147 |
|
---|
148 | var interpreter = problem.SymbolicExpressionTreeInterpreter;
|
---|
149 | var crossover = problem.OperatorsParameter.Value.OfType<SymbolicDataAnalysisExpressionSemanticSimilarityCrossover<IRegressionProblemData>>().First();
|
---|
150 |
|
---|
151 | var globalScope = new Scope("Global Scope");
|
---|
152 | globalScope.Variables.Add(new Core.Variable("Random", twister));
|
---|
153 | var context = new ExecutionContext(null, problem, globalScope);
|
---|
154 | context = new ExecutionContext(context, crossover, globalScope);
|
---|
155 |
|
---|
156 | stopwatch.Start();
|
---|
157 | for (int i = 0; i != PopulationSize; ++i) {
|
---|
158 | var parent0 = (ISymbolicExpressionTree)trees.SelectRandom(twister).Clone();
|
---|
159 | var scopeParent0 = new Scope();
|
---|
160 | scopeParent0.Variables.Add(new Core.Variable(crossover.ParentsParameter.ActualName, parent0));
|
---|
161 | context.Scope.SubScopes.Add(scopeParent0);
|
---|
162 |
|
---|
163 | var parent1 = (ISymbolicExpressionTree)trees.SelectRandom(twister).Clone();
|
---|
164 | var scopeParent1 = new Scope();
|
---|
165 | scopeParent1.Variables.Add(new Core.Variable(crossover.ParentsParameter.ActualName, parent1));
|
---|
166 | context.Scope.SubScopes.Add(scopeParent1);
|
---|
167 |
|
---|
168 | crossover.Execute(context, new CancellationToken());
|
---|
169 |
|
---|
170 | context.Scope.SubScopes.Remove(scopeParent0); // clean the scope in preparation for the next iteration
|
---|
171 | context.Scope.SubScopes.Remove(scopeParent1); // clean the scope in preparation for the next iteration
|
---|
172 | }
|
---|
173 | stopwatch.Stop();
|
---|
174 | double msPerCrossover = 2 * stopwatch.ElapsedMilliseconds / (double)PopulationSize;
|
---|
175 | Console.WriteLine("SemanticSimilarityCrossover: " + Environment.NewLine +
|
---|
176 | interpreter.EvaluatedSolutions + " evaluations" + Environment.NewLine +
|
---|
177 | msPerCrossover + " ms per crossover (~" + Math.Round(1000.0 / (msPerCrossover)) + " crossover operations / s)");
|
---|
178 |
|
---|
179 | foreach (var tree in trees)
|
---|
180 | Util.IsValid(tree);
|
---|
181 | }
|
---|
182 |
|
---|
183 | private static void ProbabilisticFunctionalCrossoverPerformanceTest() {
|
---|
184 | var twister = new MersenneTwister(31415);
|
---|
185 | var dataset = Util.CreateRandomDataset(twister, Rows, Columns);
|
---|
186 | var grammar = new FullFunctionalExpressionGrammar();
|
---|
187 | var stopwatch = new Stopwatch();
|
---|
188 |
|
---|
189 | grammar.MaximumFunctionArguments = 0;
|
---|
190 | grammar.MaximumFunctionDefinitions = 0;
|
---|
191 | grammar.MinimumFunctionArguments = 0;
|
---|
192 | grammar.MinimumFunctionDefinitions = 0;
|
---|
193 |
|
---|
194 | var trees = Util.CreateRandomTrees(twister, dataset, grammar, PopulationSize, 1, MaxTreeLength, 0, 0);
|
---|
195 | foreach (ISymbolicExpressionTree tree in trees) {
|
---|
196 | Util.InitTree(tree, twister, new List<string>(dataset.VariableNames));
|
---|
197 | }
|
---|
198 | var problemData = new RegressionProblemData(dataset, dataset.VariableNames, dataset.VariableNames.Last());
|
---|
199 | var problem = new SymbolicRegressionSingleObjectiveProblem();
|
---|
200 | problem.ProblemData = problemData;
|
---|
201 | var interpreter = problem.SymbolicExpressionTreeInterpreter;
|
---|
202 |
|
---|
203 | var crossover = problem.OperatorsParameter.Value.OfType<SymbolicDataAnalysisExpressionProbabilisticFunctionalCrossover<IRegressionProblemData>>().First();
|
---|
204 |
|
---|
205 | var globalScope = new Scope("Global Scope");
|
---|
206 | globalScope.Variables.Add(new Core.Variable("Random", twister));
|
---|
207 | var context = new ExecutionContext(null, problem, globalScope);
|
---|
208 | context = new ExecutionContext(context, crossover, globalScope);
|
---|
209 |
|
---|
210 | stopwatch.Start();
|
---|
211 | for (int i = 0; i != PopulationSize; ++i) {
|
---|
212 | var parent0 = (ISymbolicExpressionTree)trees.SelectRandom(twister).Clone();
|
---|
213 | var scopeParent0 = new Scope();
|
---|
214 | scopeParent0.Variables.Add(new Core.Variable(crossover.ParentsParameter.ActualName, parent0));
|
---|
215 | context.Scope.SubScopes.Add(scopeParent0);
|
---|
216 |
|
---|
217 | var parent1 = (ISymbolicExpressionTree)trees.SelectRandom(twister).Clone();
|
---|
218 | var scopeParent1 = new Scope();
|
---|
219 | scopeParent1.Variables.Add(new Core.Variable(crossover.ParentsParameter.ActualName, parent1));
|
---|
220 | context.Scope.SubScopes.Add(scopeParent1);
|
---|
221 |
|
---|
222 | crossover.Execute(context, new CancellationToken());
|
---|
223 |
|
---|
224 | context.Scope.SubScopes.Remove(scopeParent0); // clean the scope in preparation for the next iteration
|
---|
225 | context.Scope.SubScopes.Remove(scopeParent1); // clean the scope in preparation for the next iteration
|
---|
226 | }
|
---|
227 | stopwatch.Stop();
|
---|
228 |
|
---|
229 | double msPerCrossover = 2 * stopwatch.ElapsedMilliseconds / (double)PopulationSize;
|
---|
230 | Console.WriteLine("ProbabilisticFunctionalCrossover: " + Environment.NewLine +
|
---|
231 | interpreter.EvaluatedSolutions + " evaluations" + Environment.NewLine +
|
---|
232 | msPerCrossover + " ms per crossover (~" + Math.Round(1000.0 / (msPerCrossover)) + " crossover operations / s)");
|
---|
233 | foreach (var tree in trees)
|
---|
234 | Util.IsValid(tree);
|
---|
235 | }
|
---|
236 |
|
---|
237 | private static void DeterministicBestCrossoverPerformanceTest() {
|
---|
238 | var twister = new MersenneTwister(31415);
|
---|
239 | var dataset = Util.CreateRandomDataset(twister, Rows, Columns);
|
---|
240 | var grammar = new FullFunctionalExpressionGrammar();
|
---|
241 | var stopwatch = new Stopwatch();
|
---|
242 |
|
---|
243 | grammar.MaximumFunctionArguments = 0;
|
---|
244 | grammar.MaximumFunctionDefinitions = 0;
|
---|
245 | grammar.MinimumFunctionArguments = 0;
|
---|
246 | grammar.MinimumFunctionDefinitions = 0;
|
---|
247 |
|
---|
248 | var trees = Util.CreateRandomTrees(twister, dataset, grammar, PopulationSize, 1, MaxTreeLength, 0, 0);
|
---|
249 | foreach (ISymbolicExpressionTree tree in trees) {
|
---|
250 | Util.InitTree(tree, twister, new List<string>(dataset.VariableNames));
|
---|
251 | }
|
---|
252 | var problemData = new RegressionProblemData(dataset, dataset.VariableNames, dataset.VariableNames.Last());
|
---|
253 | var problem = new SymbolicRegressionSingleObjectiveProblem();
|
---|
254 | problem.ProblemData = problemData;
|
---|
255 |
|
---|
256 | var interpreter = problem.SymbolicExpressionTreeInterpreter;
|
---|
257 | var crossover = problem.OperatorsParameter.Value.OfType<SymbolicDataAnalysisExpressionDeterministicBestCrossover<IRegressionProblemData>>().First();
|
---|
258 |
|
---|
259 | var globalScope = new Scope("Global Scope");
|
---|
260 | globalScope.Variables.Add(new Core.Variable("Random", twister));
|
---|
261 | var context = new ExecutionContext(null, problem, globalScope);
|
---|
262 | context = new ExecutionContext(context, crossover, globalScope);
|
---|
263 |
|
---|
264 | stopwatch.Start();
|
---|
265 | for (int i = 0; i != PopulationSize; ++i) {
|
---|
266 | var parent0 = (ISymbolicExpressionTree)trees.SelectRandom(twister).Clone();
|
---|
267 | var scopeParent0 = new Scope();
|
---|
268 | scopeParent0.Variables.Add(new Core.Variable(crossover.ParentsParameter.ActualName, parent0));
|
---|
269 | context.Scope.SubScopes.Add(scopeParent0);
|
---|
270 |
|
---|
271 | var parent1 = (ISymbolicExpressionTree)trees.SelectRandom(twister).Clone();
|
---|
272 | var scopeParent1 = new Scope();
|
---|
273 | scopeParent1.Variables.Add(new Core.Variable(crossover.ParentsParameter.ActualName, parent1));
|
---|
274 | context.Scope.SubScopes.Add(scopeParent1);
|
---|
275 |
|
---|
276 | crossover.Execute(context, new CancellationToken());
|
---|
277 |
|
---|
278 | context.Scope.SubScopes.Remove(scopeParent0); // clean the scope in preparation for the next iteration
|
---|
279 | context.Scope.SubScopes.Remove(scopeParent1); // clean the scope in preparation for the next iteration
|
---|
280 | }
|
---|
281 | stopwatch.Stop();
|
---|
282 | double msPerCrossover = 2 * stopwatch.ElapsedMilliseconds / (double)PopulationSize;
|
---|
283 | Console.WriteLine("DeterministicBestCrossover: " + Environment.NewLine +
|
---|
284 | interpreter.EvaluatedSolutions + " evaluations" + Environment.NewLine +
|
---|
285 | msPerCrossover + " ms per crossover (~" + Math.Round(1000.0 / (msPerCrossover)) + " crossover operations / s)");
|
---|
286 |
|
---|
287 | foreach (var tree in trees)
|
---|
288 | Util.IsValid(tree);
|
---|
289 | }
|
---|
290 |
|
---|
291 | private static void ContextAwareCrossoverPerformanceTest() {
|
---|
292 | var twister = new MersenneTwister(31415);
|
---|
293 | var dataset = Util.CreateRandomDataset(twister, Rows, Columns);
|
---|
294 | var grammar = new FullFunctionalExpressionGrammar();
|
---|
295 | var stopwatch = new Stopwatch();
|
---|
296 |
|
---|
297 | grammar.MaximumFunctionArguments = 0;
|
---|
298 | grammar.MaximumFunctionDefinitions = 0;
|
---|
299 | grammar.MinimumFunctionArguments = 0;
|
---|
300 | grammar.MinimumFunctionDefinitions = 0;
|
---|
301 |
|
---|
302 | var trees = Util.CreateRandomTrees(twister, dataset, grammar, PopulationSize, 1, MaxTreeLength, 0, 0);
|
---|
303 | foreach (ISymbolicExpressionTree tree in trees) {
|
---|
304 | Util.InitTree(tree, twister, new List<string>(dataset.VariableNames));
|
---|
305 | }
|
---|
306 | var problemData = new RegressionProblemData(dataset, dataset.VariableNames, dataset.VariableNames.Last());
|
---|
307 | var problem = new SymbolicRegressionSingleObjectiveProblem();
|
---|
308 | problem.ProblemData = problemData;
|
---|
309 |
|
---|
310 | var interpreter = problem.SymbolicExpressionTreeInterpreter;
|
---|
311 | var crossover = problem.OperatorsParameter.Value.OfType<SymbolicDataAnalysisExpressionContextAwareCrossover<IRegressionProblemData>>().First();
|
---|
312 |
|
---|
313 | var globalScope = new Scope("Global Scope");
|
---|
314 | globalScope.Variables.Add(new Core.Variable("Random", twister));
|
---|
315 | var context = new ExecutionContext(null, problem, globalScope);
|
---|
316 | context = new ExecutionContext(context, crossover, globalScope);
|
---|
317 |
|
---|
318 | stopwatch.Start();
|
---|
319 | for (int i = 0; i != PopulationSize; ++i) {
|
---|
320 | var parent0 = (ISymbolicExpressionTree)trees.SelectRandom(twister).Clone();
|
---|
321 | var scopeParent0 = new Scope();
|
---|
322 | scopeParent0.Variables.Add(new Core.Variable(crossover.ParentsParameter.ActualName, parent0));
|
---|
323 | context.Scope.SubScopes.Add(scopeParent0);
|
---|
324 |
|
---|
325 | var parent1 = (ISymbolicExpressionTree)trees.SelectRandom(twister).Clone();
|
---|
326 | var scopeParent1 = new Scope();
|
---|
327 | scopeParent1.Variables.Add(new Core.Variable(crossover.ParentsParameter.ActualName, parent1));
|
---|
328 | context.Scope.SubScopes.Add(scopeParent1);
|
---|
329 |
|
---|
330 | crossover.Execute(context, new CancellationToken());
|
---|
331 |
|
---|
332 | context.Scope.SubScopes.Remove(scopeParent0); // clean the scope in preparation for the next iteration
|
---|
333 | context.Scope.SubScopes.Remove(scopeParent1); // clean the scope in preparation for the next iteration
|
---|
334 | }
|
---|
335 | stopwatch.Stop();
|
---|
336 | double msPerCrossover = 2 * stopwatch.ElapsedMilliseconds / (double)PopulationSize;
|
---|
337 | Console.WriteLine("ContextAwareCrossover: " + Environment.NewLine +
|
---|
338 | interpreter.EvaluatedSolutions + " evaluations" + Environment.NewLine +
|
---|
339 | msPerCrossover + " ms per crossover (~" + Math.Round(1000.0 / (msPerCrossover)) + " crossover operations / s)");
|
---|
340 |
|
---|
341 | foreach (var tree in trees)
|
---|
342 | Util.IsValid(tree);
|
---|
343 | }
|
---|
344 | }
|
---|
345 | }
|
---|