Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.BottomUpTreeDistance/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/SymbolicDataAnalysisProblem.cs @ 11301

Last change on this file since 11301 was 11254, checked in by bburlacu, 10 years ago

#2215: Do not add the BottomUpSimilarityCalculator to the problem operators collection. Add it directly to the diversity analyzer.

File size: 21.0 KB
RevLine 
[5577]1#region License Information
2/* HeuristicLab
[11171]3 * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[5577]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Drawing;
[5618]24using System.Linq;
[11219]25using HeuristicLab.Analysis;
[5577]26using HeuristicLab.Common;
27using HeuristicLab.Common.Resources;
28using HeuristicLab.Core;
29using HeuristicLab.Data;
[5618]30using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
[5577]31using HeuristicLab.Optimization;
[11219]32using HeuristicLab.Optimization.Operators;
[5577]33using HeuristicLab.Parameters;
34using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
[5618]35using HeuristicLab.PluginInfrastructure;
[7823]36using HeuristicLab.Problems.Instances;
[5577]37
38namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
39  [StorableClass]
[7823]40  public abstract class SymbolicDataAnalysisProblem<T, U, V> : HeuristicOptimizationProblem<U, V>, IDataAnalysisProblem<T>, ISymbolicDataAnalysisProblem, IStorableContent,
41    IProblemInstanceConsumer<T>, IProblemInstanceExporter<T>
[6978]42    where T : class, IDataAnalysisProblemData
[5580]43    where U : class, ISymbolicDataAnalysisEvaluator<T>
44    where V : class, ISymbolicDataAnalysisSolutionCreator {
[5770]45
[5577]46    #region parameter names & descriptions
47    private const string ProblemDataParameterName = "ProblemData";
48    private const string SymbolicExpressionTreeGrammarParameterName = "SymbolicExpressionTreeGrammar";
49    private const string SymbolicExpressionTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
50    private const string MaximumSymbolicExpressionTreeDepthParameterName = "MaximumSymbolicExpressionTreeDepth";
51    private const string MaximumSymbolicExpressionTreeLengthParameterName = "MaximumSymbolicExpressionTreeLength";
52    private const string MaximumFunctionDefinitionsParameterName = "MaximumFunctionDefinitions";
53    private const string MaximumFunctionArgumentsParameterName = "MaximumFunctionArguments";
[5759]54    private const string RelativeNumberOfEvaluatedSamplesParameterName = "RelativeNumberOfEvaluatedSamples";
[5733]55    private const string FitnessCalculationPartitionParameterName = "FitnessCalculationPartition";
[5775]56    private const string ValidationPartitionParameterName = "ValidationPartition";
[8664]57    private const string ApplyLinearScalingParameterName = "ApplyLinearScaling";
[5577]58
59    private const string ProblemDataParameterDescription = "";
60    private const string SymbolicExpressionTreeGrammarParameterDescription = "The grammar that should be used for symbolic expression tree.";
61    private const string SymoblicExpressionTreeInterpreterParameterDescription = "The interpreter that should be used to evaluate the symbolic expression tree.";
62    private const string MaximumSymbolicExpressionTreeDepthParameterDescription = "Maximal depth of the symbolic expression. The minimum depth needed for the algorithm is 3 because two levels are reserved for the ProgramRoot and the Start symbol.";
63    private const string MaximumSymbolicExpressionTreeLengthParameterDescription = "Maximal length of the symbolic expression.";
64    private const string MaximumFunctionDefinitionsParameterDescription = "Maximal number of automatically defined functions";
65    private const string MaximumFunctionArgumentsParameterDescription = "Maximal number of arguments of automatically defined functions.";
[5759]66    private const string RelativeNumberOfEvaluatedSamplesParameterDescription = "The relative number of samples of the dataset partition, which should be randomly chosen for evaluation.";
67    private const string FitnessCalculationPartitionParameterDescription = "The partition of the problem data training partition, that should be used to calculate the fitness of an individual.";
[5857]68    private const string ValidationPartitionParameterDescription = "The partition of the problem data training partition, that should be used to select the best model from (optional).";
[8664]69    private const string ApplyLinearScalingParameterDescription = "Flag that indicates if the individual should be linearly scaled before evaluating.";
[5577]70    #endregion
71
72    #region parameter properties
73    IParameter IDataAnalysisProblem.ProblemDataParameter {
74      get { return ProblemDataParameter; }
75    }
76    public IValueParameter<T> ProblemDataParameter {
77      get { return (IValueParameter<T>)Parameters[ProblemDataParameterName]; }
78    }
79    public IValueParameter<ISymbolicDataAnalysisGrammar> SymbolicExpressionTreeGrammarParameter {
80      get { return (IValueParameter<ISymbolicDataAnalysisGrammar>)Parameters[SymbolicExpressionTreeGrammarParameterName]; }
81    }
[5624]82    public IValueParameter<ISymbolicDataAnalysisExpressionTreeInterpreter> SymbolicExpressionTreeInterpreterParameter {
83      get { return (IValueParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>)Parameters[SymbolicExpressionTreeInterpreterParameterName]; }
[5577]84    }
[5618]85    public IFixedValueParameter<IntValue> MaximumSymbolicExpressionTreeDepthParameter {
86      get { return (IFixedValueParameter<IntValue>)Parameters[MaximumSymbolicExpressionTreeDepthParameterName]; }
[5577]87    }
[5618]88    public IFixedValueParameter<IntValue> MaximumSymbolicExpressionTreeLengthParameter {
89      get { return (IFixedValueParameter<IntValue>)Parameters[MaximumSymbolicExpressionTreeLengthParameterName]; }
[5577]90    }
[5618]91    public IFixedValueParameter<IntValue> MaximumFunctionDefinitionsParameter {
92      get { return (IFixedValueParameter<IntValue>)Parameters[MaximumFunctionDefinitionsParameterName]; }
[5577]93    }
[5618]94    public IFixedValueParameter<IntValue> MaximumFunctionArgumentsParameter {
95      get { return (IFixedValueParameter<IntValue>)Parameters[MaximumFunctionArgumentsParameterName]; }
[5577]96    }
[5759]97    public IFixedValueParameter<PercentValue> RelativeNumberOfEvaluatedSamplesParameter {
98      get { return (IFixedValueParameter<PercentValue>)Parameters[RelativeNumberOfEvaluatedSamplesParameterName]; }
99    }
100    public IFixedValueParameter<IntRange> FitnessCalculationPartitionParameter {
101      get { return (IFixedValueParameter<IntRange>)Parameters[FitnessCalculationPartitionParameterName]; }
102    }
[5883]103    public IFixedValueParameter<IntRange> ValidationPartitionParameter {
[5775]104      get { return (IFixedValueParameter<IntRange>)Parameters[ValidationPartitionParameterName]; }
[5759]105    }
[8664]106    public IFixedValueParameter<BoolValue> ApplyLinearScalingParameter {
107      get { return (IFixedValueParameter<BoolValue>)Parameters[ApplyLinearScalingParameterName]; }
108    }
[5577]109    #endregion
110
111    #region properties
112    public string Filename { get; set; }
[7201]113    public static new Image StaticItemImage { get { return VSImageLibrary.Type; } }
[5577]114
115    IDataAnalysisProblemData IDataAnalysisProblem.ProblemData {
116      get { return ProblemData; }
117    }
118    public T ProblemData {
119      get { return ProblemDataParameter.Value; }
[5618]120      set { ProblemDataParameter.Value = value; }
[5577]121    }
122
123    public ISymbolicDataAnalysisGrammar SymbolicExpressionTreeGrammar {
124      get { return SymbolicExpressionTreeGrammarParameter.Value; }
[5618]125      set { SymbolicExpressionTreeGrammarParameter.Value = value; }
[5577]126    }
[5624]127    public ISymbolicDataAnalysisExpressionTreeInterpreter SymbolicExpressionTreeInterpreter {
[5577]128      get { return SymbolicExpressionTreeInterpreterParameter.Value; }
[5618]129      set { SymbolicExpressionTreeInterpreterParameter.Value = value; }
[5577]130    }
131
132    public IntValue MaximumSymbolicExpressionTreeDepth {
133      get { return MaximumSymbolicExpressionTreeDepthParameter.Value; }
134    }
135    public IntValue MaximumSymbolicExpressionTreeLength {
136      get { return MaximumSymbolicExpressionTreeLengthParameter.Value; }
137    }
138    public IntValue MaximumFunctionDefinitions {
139      get { return MaximumFunctionDefinitionsParameter.Value; }
140    }
141    public IntValue MaximumFunctionArguments {
[5618]142      get { return MaximumFunctionArgumentsParameter.Value; }
[5577]143    }
[5759]144    public PercentValue RelativeNumberOfEvaluatedSamples {
145      get { return RelativeNumberOfEvaluatedSamplesParameter.Value; }
146    }
147
148    public IntRange FitnessCalculationPartition {
149      get { return FitnessCalculationPartitionParameter.Value; }
150    }
[5775]151    public IntRange ValidationPartition {
[5883]152      get { return ValidationPartitionParameter.Value; }
[5759]153    }
[8664]154    public BoolValue ApplyLinearScaling {
155      get { return ApplyLinearScalingParameter.Value; }
156    }
[5577]157    #endregion
158
159    [StorableConstructor]
160    protected SymbolicDataAnalysisProblem(bool deserializing) : base(deserializing) { }
[5618]161    [StorableHook(HookType.AfterDeserialization)]
162    private void AfterDeserialization() {
[8664]163      if (!Parameters.ContainsKey(ApplyLinearScalingParameterName)) {
164        Parameters.Add(new FixedValueParameter<BoolValue>(ApplyLinearScalingParameterName, ApplyLinearScalingParameterDescription, new BoolValue(false)));
165        ApplyLinearScalingParameter.Hidden = true;
[8666]166
167        //it is assumed that for all symbolic regression algorithms linear scaling was set to true
168        //there is no possibility to determine the previous value of the parameter as it was stored in the evaluator
169        if (GetType().Name.Contains("SymbolicRegression"))
170          ApplyLinearScaling.Value = true;
[8664]171      }
172
[5618]173      RegisterEventHandlers();
174    }
175    protected SymbolicDataAnalysisProblem(SymbolicDataAnalysisProblem<T, U, V> original, Cloner cloner)
176      : base(original, cloner) {
177      RegisterEventHandlers();
178    }
[5577]179
[5618]180    protected SymbolicDataAnalysisProblem(T problemData, U evaluator, V solutionCreator)
181      : base(evaluator, solutionCreator) {
182      Parameters.Add(new ValueParameter<T>(ProblemDataParameterName, ProblemDataParameterDescription, problemData));
[5577]183      Parameters.Add(new ValueParameter<ISymbolicDataAnalysisGrammar>(SymbolicExpressionTreeGrammarParameterName, SymbolicExpressionTreeGrammarParameterDescription));
[5624]184      Parameters.Add(new ValueParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>(SymbolicExpressionTreeInterpreterParameterName, SymoblicExpressionTreeInterpreterParameterDescription));
[5847]185      Parameters.Add(new FixedValueParameter<IntValue>(MaximumSymbolicExpressionTreeDepthParameterName, MaximumSymbolicExpressionTreeDepthParameterDescription));
186      Parameters.Add(new FixedValueParameter<IntValue>(MaximumSymbolicExpressionTreeLengthParameterName, MaximumSymbolicExpressionTreeLengthParameterDescription));
187      Parameters.Add(new FixedValueParameter<IntValue>(MaximumFunctionDefinitionsParameterName, MaximumFunctionDefinitionsParameterDescription));
188      Parameters.Add(new FixedValueParameter<IntValue>(MaximumFunctionArgumentsParameterName, MaximumFunctionArgumentsParameterDescription));
189      Parameters.Add(new FixedValueParameter<IntRange>(FitnessCalculationPartitionParameterName, FitnessCalculationPartitionParameterDescription));
190      Parameters.Add(new FixedValueParameter<IntRange>(ValidationPartitionParameterName, ValidationPartitionParameterDescription));
[5759]191      Parameters.Add(new FixedValueParameter<PercentValue>(RelativeNumberOfEvaluatedSamplesParameterName, RelativeNumberOfEvaluatedSamplesParameterDescription, new PercentValue(1)));
[8664]192      Parameters.Add(new FixedValueParameter<BoolValue>(ApplyLinearScalingParameterName, ApplyLinearScalingParameterDescription, new BoolValue(false)));
[5618]193
[5854]194      SymbolicExpressionTreeInterpreterParameter.Hidden = true;
195      MaximumFunctionArgumentsParameter.Hidden = true;
196      MaximumFunctionDefinitionsParameter.Hidden = true;
[8664]197      ApplyLinearScalingParameter.Hidden = true;
[5854]198
[5618]199      SymbolicExpressionTreeGrammar = new TypeCoherentExpressionGrammar();
[9830]200      SymbolicExpressionTreeInterpreter = new SymbolicDataAnalysisExpressionTreeLinearInterpreter();
[5618]201
[5770]202      FitnessCalculationPartition.Start = ProblemData.TrainingPartition.Start;
203      FitnessCalculationPartition.End = ProblemData.TrainingPartition.End;
204
[5722]205      InitializeOperators();
206
[5618]207      UpdateGrammar();
208      RegisterEventHandlers();
[5577]209    }
210
[5685]211    protected virtual void UpdateGrammar() {
[5726]212      SymbolicExpressionTreeGrammar.MaximumFunctionArguments = MaximumFunctionArguments.Value;
213      SymbolicExpressionTreeGrammar.MaximumFunctionDefinitions = MaximumFunctionDefinitions.Value;
[5685]214      foreach (var varSymbol in SymbolicExpressionTreeGrammar.Symbols.OfType<HeuristicLab.Problems.DataAnalysis.Symbolic.Variable>()) {
[8936]215        if (!varSymbol.Fixed) {
216          varSymbol.AllVariableNames = ProblemData.InputVariables.Select(x => x.Value);
217          varSymbol.VariableNames = ProblemData.AllowedInputVariables;
218        }
[5685]219      }
220      foreach (var varSymbol in SymbolicExpressionTreeGrammar.Symbols.OfType<HeuristicLab.Problems.DataAnalysis.Symbolic.VariableCondition>()) {
[8936]221        if (!varSymbol.Fixed) {
222          varSymbol.AllVariableNames = ProblemData.InputVariables.Select(x => x.Value);
223          varSymbol.VariableNames = ProblemData.AllowedInputVariables;
224        }
[5685]225      }
226    }
227
[5618]228    private void InitializeOperators() {
229      Operators.AddRange(ApplicationManager.Manager.GetInstances<ISymbolicExpressionTreeOperator>());
[7506]230      Operators.AddRange(ApplicationManager.Manager.GetInstances<ISymbolicDataAnalysisExpressionCrossover<T>>());
[5618]231      Operators.Add(new SymbolicExpressionSymbolFrequencyAnalyzer());
[5685]232      Operators.Add(new SymbolicDataAnalysisVariableFrequencyAnalyzer());
[5618]233      Operators.Add(new MinAverageMaxSymbolicExpressionTreeLengthAnalyzer());
[6978]234      Operators.Add(new SymbolicExpressionTreeLengthAnalyzer());
[11219]235      Operators.Add(new SingleObjectivePopulationDiversityAnalyzer());
[5618]236      ParameterizeOperators();
237    }
238
[5685]239    #region events
[5618]240    private void RegisterEventHandlers() {
241      ProblemDataParameter.ValueChanged += new EventHandler(ProblemDataParameter_ValueChanged);
242      ProblemDataParameter.Value.Changed += (object sender, EventArgs e) => OnProblemDataChanged();
243
[5841]244      SymbolicExpressionTreeGrammarParameter.ValueChanged += new EventHandler(SymbolicExpressionTreeGrammarParameter_ValueChanged);
245
[5618]246      MaximumFunctionArguments.ValueChanged += new EventHandler(ArchitectureParameterValue_ValueChanged);
247      MaximumFunctionDefinitions.ValueChanged += new EventHandler(ArchitectureParameterValue_ValueChanged);
248      MaximumSymbolicExpressionTreeDepth.ValueChanged += new EventHandler(MaximumSymbolicExpressionTreeDepth_ValueChanged);
249    }
250
[5685]251    private void ProblemDataParameter_ValueChanged(object sender, EventArgs e) {
[5887]252      ValidationPartition.Start = 0;
253      ValidationPartition.End = 0;
[5685]254      ProblemDataParameter.Value.Changed += (object s, EventArgs args) => OnProblemDataChanged();
255      OnProblemDataChanged();
256    }
257
[5841]258    private void SymbolicExpressionTreeGrammarParameter_ValueChanged(object sender, EventArgs e) {
259      UpdateGrammar();
260    }
261
[5618]262    private void ArchitectureParameterValue_ValueChanged(object sender, EventArgs e) {
263      UpdateGrammar();
264    }
265
266    private void MaximumSymbolicExpressionTreeDepth_ValueChanged(object sender, EventArgs e) {
267      if (MaximumSymbolicExpressionTreeDepth != null && MaximumSymbolicExpressionTreeDepth.Value < 3)
268        MaximumSymbolicExpressionTreeDepth.Value = 3;
269    }
270
271    protected override void OnSolutionCreatorChanged() {
272      base.OnSolutionCreatorChanged();
273      SolutionCreator.SymbolicExpressionTreeParameter.ActualNameChanged += new EventHandler(SolutionCreator_SymbolicExpressionTreeParameter_ActualNameChanged);
274      ParameterizeOperators();
275    }
[5685]276
[5618]277    private void SolutionCreator_SymbolicExpressionTreeParameter_ActualNameChanged(object sender, EventArgs e) {
278      ParameterizeOperators();
279    }
280
281    protected override void OnEvaluatorChanged() {
282      base.OnEvaluatorChanged();
[5685]283      ParameterizeOperators();
[5618]284    }
285
[5577]286    public event EventHandler ProblemDataChanged;
287    protected virtual void OnProblemDataChanged() {
[5770]288      FitnessCalculationPartition.Start = ProblemData.TrainingPartition.Start;
289      FitnessCalculationPartition.End = ProblemData.TrainingPartition.End;
290
[5618]291      UpdateGrammar();
[5685]292      ParameterizeOperators();
293
[5577]294      var handler = ProblemDataChanged;
295      if (handler != null) handler(this, EventArgs.Empty);
[5618]296
297      OnReset();
[5577]298    }
[5685]299    #endregion
[5618]300
[5685]301    protected virtual void ParameterizeOperators() {
[7506]302      var operators = Parameters.OfType<IValueParameter>().Select(p => p.Value).OfType<IOperator>().Union(Operators).ToList();
[5618]303
304      foreach (var op in operators.OfType<ISymbolicExpressionTreeGrammarBasedOperator>()) {
[8664]305        op.SymbolicExpressionTreeGrammarParameter.ActualName = SymbolicExpressionTreeGrammarParameter.Name;
[5618]306      }
307      foreach (var op in operators.OfType<ISymbolicExpressionTreeSizeConstraintOperator>()) {
[8664]308        op.MaximumSymbolicExpressionTreeDepthParameter.ActualName = MaximumSymbolicExpressionTreeDepthParameter.Name;
309        op.MaximumSymbolicExpressionTreeLengthParameter.ActualName = MaximumSymbolicExpressionTreeLengthParameter.Name;
[5618]310      }
311      foreach (var op in operators.OfType<ISymbolicExpressionTreeArchitectureAlteringOperator>()) {
[8664]312        op.MaximumFunctionArgumentsParameter.ActualName = MaximumFunctionArgumentsParameter.Name;
313        op.MaximumFunctionDefinitionsParameter.ActualName = MaximumFunctionDefinitionsParameter.Name;
[5618]314      }
315      foreach (var op in operators.OfType<ISymbolicDataAnalysisEvaluator<T>>()) {
[5685]316        op.ProblemDataParameter.ActualName = ProblemDataParameterName;
[5618]317        op.SymbolicExpressionTreeParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
[5759]318        op.EvaluationPartitionParameter.ActualName = FitnessCalculationPartitionParameter.Name;
319        op.RelativeNumberOfEvaluatedSamplesParameter.ActualName = RelativeNumberOfEvaluatedSamplesParameter.Name;
[8664]320        op.ApplyLinearScalingParameter.ActualName = ApplyLinearScalingParameter.Name;
[5618]321      }
322      foreach (var op in operators.OfType<ISymbolicExpressionTreeCrossover>()) {
323        op.ParentsParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
324        op.ChildParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
325      }
326      foreach (var op in operators.OfType<ISymbolicExpressionTreeManipulator>()) {
327        op.SymbolicExpressionTreeParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
328      }
329      foreach (var op in operators.OfType<ISymbolicExpressionTreeAnalyzer>()) {
330        op.SymbolicExpressionTreeParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
331      }
[8664]332      foreach (var op in operators.OfType<ISymbolicDataAnalysisSingleObjectiveAnalyzer>()) {
333        op.ApplyLinearScalingParameter.ActualName = ApplyLinearScalingParameter.Name;
334      }
335      foreach (var op in operators.OfType<ISymbolicDataAnalysisMultiObjectiveAnalyzer>()) {
336        op.ApplyLinearScalingParameter.ActualName = ApplyLinearScalingParameter.Name;
337      }
[6135]338      foreach (var op in operators.OfType<ISymbolicDataAnalysisAnalyzer>()) {
339        op.SymbolicExpressionTreeParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
340      }
[5759]341      foreach (var op in operators.OfType<ISymbolicDataAnalysisValidationAnalyzer<U, T>>()) {
342        op.RelativeNumberOfEvaluatedSamplesParameter.ActualName = RelativeNumberOfEvaluatedSamplesParameter.Name;
[5883]343        op.ValidationPartitionParameter.ActualName = ValidationPartitionParameter.Name;
[5759]344      }
[5685]345      foreach (var op in operators.OfType<ISymbolicDataAnalysisInterpreterOperator>()) {
[8664]346        op.SymbolicDataAnalysisTreeInterpreterParameter.ActualName = SymbolicExpressionTreeInterpreterParameter.Name;
[5685]347      }
[7506]348      foreach (var op in operators.OfType<ISymbolicDataAnalysisExpressionCrossover<T>>()) {
[8664]349        op.EvaluationPartitionParameter.ActualName = FitnessCalculationPartitionParameter.Name;
[7506]350        op.ProblemDataParameter.ActualName = ProblemDataParameter.Name;
351        op.EvaluationPartitionParameter.ActualName = FitnessCalculationPartitionParameter.Name;
352        op.RelativeNumberOfEvaluatedSamplesParameter.ActualName = RelativeNumberOfEvaluatedSamplesParameter.Name;
353        op.EvaluatorParameter.ActualName = EvaluatorParameter.Name;
354      }
[11219]355      foreach (var op in operators.OfType<SingleObjectiveSolutionSimilarityCalculator>()) {
356        op.QualityVariableName = "Quality";
357        op.SolutionVariableName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
358      }
359      foreach (var op in operators.OfType<SingleObjectivePopulationDiversityAnalyzer>()) {
[11254]360        op.SimilarityCalculator = new BottomUpTreeSimilarityCalculator();
[11219]361      }
[5618]362    }
[5623]363
[7823]364    #region Import & Export
[9452]365    public virtual void Load(T data) {
[7823]366      Name = data.Name;
367      Description = data.Description;
368      ProblemData = data;
369    }
370
[9452]371    public virtual T Export() {
[7823]372      return ProblemData;
373    }
374    #endregion
[5577]375  }
376}
Note: See TracBrowser for help on using the repository browser.