1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Diagnostics;
|
---|
25 | using System.Linq;
|
---|
26 | using HeuristicLab.Analysis.AlgorithmBehavior.Analyzers;
|
---|
27 | using MIConvexHull;
|
---|
28 |
|
---|
29 | namespace PerformanceTests {
|
---|
30 | class Program {
|
---|
31 |
|
---|
32 | static int nrOfPoints = 1000;
|
---|
33 | static int dimension = 10;
|
---|
34 |
|
---|
35 | static void Main(string[] args) {
|
---|
36 | //TestConvexHullPerformance();
|
---|
37 | //TestVolumeCalculationPerformance();
|
---|
38 |
|
---|
39 | TestMDSPerformance();
|
---|
40 | }
|
---|
41 |
|
---|
42 | public static void TestMDSPerformance() {
|
---|
43 | double[][] orgPoints = new double[nrOfPoints][];
|
---|
44 | double[][] orgDm = new double[nrOfPoints][];
|
---|
45 | double[][] newPoints = null;
|
---|
46 | Stopwatch watch = new Stopwatch();
|
---|
47 |
|
---|
48 | AllocArray(orgPoints, dimension);
|
---|
49 | AllocArray(orgDm, nrOfPoints);
|
---|
50 | SamplePoints(orgPoints);
|
---|
51 | CalculateDistanceMatrix(orgDm, orgPoints);
|
---|
52 |
|
---|
53 | watch.Start();
|
---|
54 | newPoints = DistanceMatrixToPoints.MetricMDS(orgDm, dimension);
|
---|
55 | watch.Stop();
|
---|
56 | Console.WriteLine("Runtime of MetricMDS (in sec): " + watch.Elapsed.TotalSeconds);
|
---|
57 |
|
---|
58 | Console.ReadLine();
|
---|
59 | }
|
---|
60 |
|
---|
61 | public static void TestConvexHullPerformance() {
|
---|
62 | List<double[]> result = null;
|
---|
63 | Stopwatch watch = new Stopwatch();
|
---|
64 |
|
---|
65 | var data = CreateRandomData(nrOfPoints, dimension);
|
---|
66 | var dataList = data.ToList();
|
---|
67 |
|
---|
68 | //calculate convex hull with LP
|
---|
69 | watch.Start();
|
---|
70 | result = LPHull.Calculate(data);
|
---|
71 | watch.Stop();
|
---|
72 | Console.WriteLine("Runtime of LPHull (in sec): " + watch.Elapsed.TotalSeconds);
|
---|
73 |
|
---|
74 | //calculate convex hull with SMO
|
---|
75 | watch.Restart();
|
---|
76 | result = HyperHull.Calculate(data);
|
---|
77 | watch.Stop();
|
---|
78 | Console.WriteLine("Runtime of HyperHull (in sec): " + watch.Elapsed.TotalSeconds);
|
---|
79 |
|
---|
80 | //calculate convex hull with MIConvexHull
|
---|
81 | watch.Restart();
|
---|
82 | result = ConvexHull.Create(data).Points.Select(x => x.Position).ToList();
|
---|
83 | watch.Stop();
|
---|
84 | Console.WriteLine("Runtime of MIConvexHull (in sec): " + watch.Elapsed.TotalSeconds);
|
---|
85 |
|
---|
86 | //calculate convex hull with QHull
|
---|
87 | watch.Restart();
|
---|
88 | result = QhullWrapper.Calculate(dataList);
|
---|
89 | watch.Stop();
|
---|
90 | Console.WriteLine("Runtime of QHull (in sec): " + watch.Elapsed.TotalSeconds);
|
---|
91 |
|
---|
92 | Console.ReadLine();
|
---|
93 | }
|
---|
94 |
|
---|
95 | public static void TestVolumeCalculationPerformance() {
|
---|
96 | var data = CreateRandomData(nrOfPoints, dimension);
|
---|
97 | var dataList = data.ToList();
|
---|
98 | List<double[]> convexHull = null;
|
---|
99 | double volume = 0.0;
|
---|
100 | Stopwatch watch = new Stopwatch();
|
---|
101 |
|
---|
102 |
|
---|
103 | //calculate volume with LP and then use QHull
|
---|
104 | watch.Start();
|
---|
105 | convexHull = LPHull.Calculate(data);
|
---|
106 | volume = QhullWrapper.CalculateVolume(convexHull);
|
---|
107 | watch.Stop();
|
---|
108 | Console.WriteLine(Environment.NewLine + "## Runtime of LPHull/QHull (sec): " + watch.Elapsed.TotalSeconds);
|
---|
109 | //Console.WriteLine("Volume of convex hull is: " + volume);
|
---|
110 |
|
---|
111 | //calculate volume with QHull
|
---|
112 | watch.Restart();
|
---|
113 | volume = QhullWrapper.CalculateVolume(dataList);
|
---|
114 | watch.Stop();
|
---|
115 | Console.WriteLine(Environment.NewLine + "## Runtime of QHull (sec): " + watch.Elapsed.TotalSeconds);
|
---|
116 | //Console.WriteLine("Volume of convex hull is: " + volume);
|
---|
117 |
|
---|
118 | //calculate volume of data with delauny triangulation
|
---|
119 | watch.Restart();
|
---|
120 | volume = ConvexHullMeasures.CalculateVolume(dataList);
|
---|
121 | watch.Stop();
|
---|
122 | Console.WriteLine(Environment.NewLine + "## Runtime using all data with delauny (sec): " + watch.Elapsed.TotalSeconds);
|
---|
123 | //Console.WriteLine("Volume of convex hull is: " + volume);
|
---|
124 |
|
---|
125 | //calculate volume with convex hull (LPHull) and delauny triangulation
|
---|
126 | watch.Restart();
|
---|
127 | convexHull = LPHull.Calculate(data);
|
---|
128 | volume = ConvexHullMeasures.CalculateVolume(convexHull);
|
---|
129 | watch.Stop();
|
---|
130 | Console.WriteLine(Environment.NewLine + "## Runtime using convex hull and delauny (sec): " + watch.Elapsed.TotalSeconds);
|
---|
131 | //Console.WriteLine("Volume of convex hull is: " + volume);
|
---|
132 |
|
---|
133 | Console.ReadLine();
|
---|
134 | }
|
---|
135 |
|
---|
136 | private static double[][] CreateRandomData(int n, int m) {
|
---|
137 | double[][] result = new double[n][];
|
---|
138 | Random rand = new Random();
|
---|
139 |
|
---|
140 | for (int i = 0; i < n; i++) {
|
---|
141 | result[i] = new double[m];
|
---|
142 | for (int j = 0; j < m; j++) {
|
---|
143 | result[i][j] = (double)rand.Next(1, 60);
|
---|
144 | }
|
---|
145 | }
|
---|
146 | return result;
|
---|
147 | }
|
---|
148 |
|
---|
149 | private static void CalculateDistanceMatrix(double[][] dm, double[][] points) {
|
---|
150 | for (int i = 0; i < points.Length; i++) {
|
---|
151 | for (int j = 0; j < points.Length; j++) {
|
---|
152 | dm[i][j] = points[i].EuclideanDistance(points[j]);
|
---|
153 | }
|
---|
154 | }
|
---|
155 | }
|
---|
156 |
|
---|
157 | private static void AllocArray(double[][] arr, int size) {
|
---|
158 | for (int i = 0; i < arr.Length; i++) {
|
---|
159 | arr[i] = new double[size];
|
---|
160 | }
|
---|
161 | }
|
---|
162 |
|
---|
163 | private static void SamplePoints(double[][] points) {
|
---|
164 | Random rand = new Random();
|
---|
165 |
|
---|
166 | for (int i = 0; i < points.Length; i++) {
|
---|
167 | for (int j = 0; j < points[i].Length; j++) {
|
---|
168 | points[i][j] = rand.NextDouble() * 100;
|
---|
169 | }
|
---|
170 | }
|
---|
171 | }
|
---|
172 | }
|
---|
173 | }
|
---|