[9730] | 1 | /*************************************************************************
|
---|
| 2 | * This file & class is part of the StarMath Project
|
---|
| 3 | * Copyright 2010, 2011 Matthew Ira Campbell, PhD.
|
---|
| 4 | *
|
---|
| 5 | * StarMath is free software: you can redistribute it and/or modify
|
---|
| 6 | * it under the terms of the GNU General Public License as published by
|
---|
| 7 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 8 | * (at your option) any later version.
|
---|
| 9 | *
|
---|
| 10 | * StarMath is distributed in the hope that it will be useful,
|
---|
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | * GNU General Public License for more details.
|
---|
| 14 | *
|
---|
| 15 | * You should have received a copy of the GNU General Public License
|
---|
| 16 | * along with StarMath. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 17 | *
|
---|
| 18 | * Please find further details and contact information on StarMath
|
---|
| 19 | * at http://starmath.codeplex.com/.
|
---|
| 20 | *************************************************************************/
|
---|
| 21 | using System;
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
| 24 |
|
---|
| 25 |
|
---|
| 26 | namespace MIConvexHull
|
---|
| 27 | {
|
---|
| 28 | public static class StarMath
|
---|
| 29 | {
|
---|
| 30 | #region Printing
|
---|
| 31 | private const int cellWidth = 10;
|
---|
| 32 | private const int numDecimals = 3;
|
---|
| 33 |
|
---|
| 34 | /// <summary>
|
---|
| 35 | /// Makes the print string.
|
---|
| 36 | /// </summary>
|
---|
| 37 | /// <param name = "A">The A.</param>
|
---|
| 38 | public static string MakePrintString(double[,] A)
|
---|
| 39 | {
|
---|
| 40 | if (A == null) return "<null>";
|
---|
| 41 | var format = "{0:F" + numDecimals + "}";
|
---|
| 42 | var p = "";
|
---|
| 43 | for (var i = 0; i < A.GetLength(0); i++)
|
---|
| 44 | {
|
---|
| 45 | p += "| ";
|
---|
| 46 | for (var j = 0; j < A.GetLength(1); j++)
|
---|
| 47 | p += formatCell(format, A[i, j]) + ",";
|
---|
| 48 | p = p.Remove(p.Length - 1);
|
---|
| 49 | p += " |\n";
|
---|
| 50 | }
|
---|
| 51 | p = p.Remove(p.Length - 1);
|
---|
| 52 | return p;
|
---|
| 53 | }
|
---|
| 54 |
|
---|
| 55 | private static object formatCell(string format, double p)
|
---|
| 56 | {
|
---|
| 57 | var numStr = string.Format(format, p);
|
---|
| 58 | numStr = numStr.TrimEnd('0');
|
---|
| 59 | numStr = numStr.TrimEnd('.');
|
---|
| 60 | var padAmt = ((double)(cellWidth - numStr.Length)) / 2;
|
---|
| 61 | numStr = numStr.PadLeft((int)Math.Floor(padAmt + numStr.Length));
|
---|
| 62 | numStr = numStr.PadRight(cellWidth);
|
---|
| 63 | return numStr;
|
---|
| 64 | }
|
---|
| 65 | #endregion
|
---|
| 66 |
|
---|
| 67 | #region Solve
|
---|
| 68 | /// <summary>
|
---|
| 69 | /// Solves the specified A matrix.
|
---|
| 70 | /// </summary>
|
---|
| 71 | /// <param name="A">The A.</param>
|
---|
| 72 | /// <param name="b">The b.</param>
|
---|
| 73 | /// <returns></returns>
|
---|
| 74 | public static double[] solve(double[,] A, IList<double> b)
|
---|
| 75 | {
|
---|
| 76 | var aLength = A.GetLength(0);
|
---|
| 77 | if (aLength != A.GetLength(1))
|
---|
| 78 | throw new Exception("Matrix, A, must be square.");
|
---|
| 79 | if (aLength != b.Count)
|
---|
| 80 | throw new Exception("Matrix, A, must be have the same number of rows as the vector, b.");
|
---|
| 81 |
|
---|
| 82 | /****** need code to determine when to switch between *****
|
---|
| 83 | ****** this analytical approach and the SOR approach *****/
|
---|
| 84 | return multiply(inverse(A, aLength), b, aLength, aLength);
|
---|
| 85 | }
|
---|
| 86 |
|
---|
| 87 | public static void solveDestructiveInto(double[,] A, double[] b, double[] target)
|
---|
| 88 | {
|
---|
| 89 | var aLength = A.GetLength(0);
|
---|
| 90 | if (aLength != A.GetLength(1))
|
---|
| 91 | throw new Exception("Matrix, A, must be square.");
|
---|
| 92 | if (aLength != b.Length)
|
---|
| 93 | throw new Exception("Matrix, A, must be have the same number of rows as the vector, b.");
|
---|
| 94 |
|
---|
| 95 | /****** need code to determine when to switch between *****
|
---|
| 96 | ****** this analytical approach and the SOR approach *****/
|
---|
| 97 | inverseInPlace(A, aLength);
|
---|
| 98 | multiplyInto(A, b, aLength, aLength, target);
|
---|
| 99 | }
|
---|
| 100 |
|
---|
| 101 | /// <summary>
|
---|
| 102 | /// does gaussian elimination.
|
---|
| 103 | /// </summary>
|
---|
| 104 | /// <param name="nDim"></param>
|
---|
| 105 | /// <param name="pfMatr"></param>
|
---|
| 106 | /// <param name="pfVect"></param>
|
---|
| 107 | /// <param name="pfSolution"></param>
|
---|
| 108 | public static void gaussElimination(int nDim, double[][] pfMatr, double[] pfVect, double[] pfSolution)
|
---|
| 109 | {
|
---|
| 110 | double fMaxElem;
|
---|
| 111 | double fAcc;
|
---|
| 112 |
|
---|
| 113 | int i, j, k, m;
|
---|
| 114 |
|
---|
| 115 | for (k = 0; k < (nDim - 1); k++) // base row of matrix
|
---|
| 116 | {
|
---|
| 117 | var rowK = pfMatr[k];
|
---|
| 118 |
|
---|
| 119 | // search of line with max element
|
---|
| 120 | fMaxElem = Math.Abs(rowK[k]);
|
---|
| 121 | m = k;
|
---|
| 122 | for (i = k + 1; i < nDim; i++)
|
---|
| 123 | {
|
---|
| 124 | if (fMaxElem < Math.Abs(pfMatr[i][k]))
|
---|
| 125 | {
|
---|
| 126 | fMaxElem = pfMatr[i][k];
|
---|
| 127 | m = i;
|
---|
| 128 | }
|
---|
| 129 | }
|
---|
| 130 |
|
---|
| 131 | // permutation of base line (index k) and max element line(index m)
|
---|
| 132 | if (m != k)
|
---|
| 133 | {
|
---|
| 134 | var rowM = pfMatr[m];
|
---|
| 135 | for (i = k; i < nDim; i++)
|
---|
| 136 | {
|
---|
| 137 | fAcc = rowK[i];
|
---|
| 138 | rowK[i] = rowM[i];
|
---|
| 139 | rowM[i] = fAcc;
|
---|
| 140 | }
|
---|
| 141 | fAcc = pfVect[k];
|
---|
| 142 | pfVect[k] = pfVect[m];
|
---|
| 143 | pfVect[m] = fAcc;
|
---|
| 144 | }
|
---|
| 145 |
|
---|
| 146 | //if( pfMatr[k*nDim + k] == 0.0) return 1; // needs improvement !!!
|
---|
| 147 |
|
---|
| 148 | // triangulation of matrix with coefficients
|
---|
| 149 | for (j = (k + 1); j < nDim; j++) // current row of matrix
|
---|
| 150 | {
|
---|
| 151 | var rowJ = pfMatr[j];
|
---|
| 152 | fAcc = -rowJ[k] / rowK[k];
|
---|
| 153 | for (i = k; i < nDim; i++)
|
---|
| 154 | {
|
---|
| 155 | rowJ[i] = rowJ[i] + fAcc * rowK[i];
|
---|
| 156 | }
|
---|
| 157 | pfVect[j] = pfVect[j] + fAcc * pfVect[k]; // free member recalculation
|
---|
| 158 | }
|
---|
| 159 | }
|
---|
| 160 |
|
---|
| 161 | for (k = (nDim - 1); k >= 0; k--)
|
---|
| 162 | {
|
---|
| 163 | var rowK = pfMatr[k];
|
---|
| 164 | pfSolution[k] = pfVect[k];
|
---|
| 165 | for (i = (k + 1); i < nDim; i++)
|
---|
| 166 | {
|
---|
| 167 | pfSolution[k] -= (rowK[i] * pfSolution[i]);
|
---|
| 168 | }
|
---|
| 169 | pfSolution[k] = pfSolution[k] / rowK[k];
|
---|
| 170 | }
|
---|
| 171 | }
|
---|
| 172 |
|
---|
| 173 | #endregion
|
---|
| 174 |
|
---|
| 175 | #region inverse transpose
|
---|
| 176 |
|
---|
| 177 | /// <summary>
|
---|
| 178 | /// Inverses the matrix A only if the diagonal is all non-zero.
|
---|
| 179 | /// A[i,i] != 0.0
|
---|
| 180 | /// </summary>
|
---|
| 181 | /// <param name = "A">The matrix to invert. This matrix is unchanged by this function.</param>
|
---|
| 182 | /// <param name="length">The length of the number of rows/columns in the square matrix, A.</param>
|
---|
| 183 | /// <returns>The inverted matrix, A^-1.</returns>
|
---|
| 184 | public static double[,] inverse(double[,] A, int length)
|
---|
| 185 | {
|
---|
| 186 | if (length == 1) return new[,] { { 1 / A[0, 0] } };
|
---|
| 187 | return inverseWithLUResult(LUDecomposition(A, length), length);
|
---|
| 188 | }
|
---|
| 189 |
|
---|
| 190 | public static void inverseInPlace(double[,] A, int length)
|
---|
| 191 | {
|
---|
| 192 | if (length == 1)
|
---|
| 193 | {
|
---|
| 194 | A[0, 0] = 1 / A[0, 0];
|
---|
| 195 | return;
|
---|
| 196 | }
|
---|
| 197 | LUDecompositionInPlace(A, length);
|
---|
| 198 | inverseWithLUResult(A, length);
|
---|
| 199 | }
|
---|
| 200 |
|
---|
| 201 |
|
---|
| 202 | /// <summary>
|
---|
| 203 | /// Returns the LU decomposition of A in a new matrix.
|
---|
| 204 | /// </summary>
|
---|
| 205 | /// <param name = "A">The matrix to invert. This matrix is unchanged by this function.</param>
|
---|
| 206 | /// <param name="length">The length of the number of rows/columns in the square matrix, A.</param>
|
---|
| 207 | /// <returns>A matrix of equal size to A that combines the L and U. Here the diagonals belongs to L and the U's diagonal elements are all 1.</returns>
|
---|
| 208 | public static double[,] LUDecomposition(double[,] A, int length)
|
---|
| 209 | {
|
---|
| 210 | var B = (double[,])A.Clone();
|
---|
| 211 | // normalize row 0
|
---|
| 212 | for (var i = 1; i < length; i++) B[0, i] /= B[0, 0];
|
---|
| 213 |
|
---|
| 214 | for (var i = 1; i < length; i++)
|
---|
| 215 | {
|
---|
| 216 | for (var j = i; j < length; j++)
|
---|
| 217 | {
|
---|
| 218 | // do a column of L
|
---|
| 219 | var sum = 0.0;
|
---|
| 220 | for (var k = 0; k < i; k++)
|
---|
| 221 | sum += B[j, k] * B[k, i];
|
---|
| 222 | B[j, i] -= sum;
|
---|
| 223 | }
|
---|
| 224 | if (i == length - 1) continue;
|
---|
| 225 | for (var j = i + 1; j < length; j++)
|
---|
| 226 | {
|
---|
| 227 | // do a row of U
|
---|
| 228 | var sum = 0.0;
|
---|
| 229 | for (var k = 0; k < i; k++)
|
---|
| 230 | sum += B[i, k] * B[k, j];
|
---|
| 231 | B[i, j] =
|
---|
| 232 | (B[i, j] - sum) / B[i, i];
|
---|
| 233 | }
|
---|
| 234 | }
|
---|
| 235 | return B;
|
---|
| 236 | }
|
---|
| 237 |
|
---|
| 238 | public static void LUDecompositionInPlace(double[,] A, int length)
|
---|
| 239 | {
|
---|
| 240 | var B = A;
|
---|
| 241 | // normalize row 0
|
---|
| 242 | for (var i = 1; i < length; i++) B[0, i] /= B[0, 0];
|
---|
| 243 |
|
---|
| 244 | for (var i = 1; i < length; i++)
|
---|
| 245 | {
|
---|
| 246 | for (var j = i; j < length; j++)
|
---|
| 247 | {
|
---|
| 248 | // do a column of L
|
---|
| 249 | var sum = 0.0;
|
---|
| 250 | for (var k = 0; k < i; k++)
|
---|
| 251 | sum += B[j, k] * B[k, i];
|
---|
| 252 | B[j, i] -= sum;
|
---|
| 253 | }
|
---|
| 254 | if (i == length - 1) continue;
|
---|
| 255 | for (var j = i + 1; j < length; j++)
|
---|
| 256 | {
|
---|
| 257 | // do a row of U
|
---|
| 258 | var sum = 0.0;
|
---|
| 259 | for (var k = 0; k < i; k++)
|
---|
| 260 | sum += B[i, k] * B[k, j];
|
---|
| 261 | B[i, j] =
|
---|
| 262 | (B[i, j] - sum) / B[i, i];
|
---|
| 263 | }
|
---|
| 264 | }
|
---|
| 265 | }
|
---|
| 266 |
|
---|
| 267 | private static double[,] inverseWithLUResult(double[,] B, int length)
|
---|
| 268 | {
|
---|
| 269 | // this code is adapted from http://users.erols.com/mdinolfo/matrix.htm
|
---|
| 270 | // one constraint/caveat in this function is that the diagonal elts. cannot
|
---|
| 271 | // be zero.
|
---|
| 272 | // if the matrix is not square or is less than B 2x2,
|
---|
| 273 | // then this function won't work
|
---|
| 274 | #region invert L
|
---|
| 275 |
|
---|
| 276 | for (var i = 0; i < length; i++)
|
---|
| 277 | for (var j = i; j < length; j++)
|
---|
| 278 | {
|
---|
| 279 | var x = 1.0;
|
---|
| 280 | if (i != j)
|
---|
| 281 | {
|
---|
| 282 | x = 0.0;
|
---|
| 283 | for (var k = i; k < j; k++)
|
---|
| 284 | x -= B[j, k] * B[k, i];
|
---|
| 285 | }
|
---|
| 286 | B[j, i] = x / B[j, j];
|
---|
| 287 | }
|
---|
| 288 |
|
---|
| 289 | #endregion
|
---|
| 290 |
|
---|
| 291 | #region invert U
|
---|
| 292 |
|
---|
| 293 | for (var i = 0; i < length; i++)
|
---|
| 294 | for (var j = i; j < length; j++)
|
---|
| 295 | {
|
---|
| 296 | if (i == j) continue;
|
---|
| 297 | var sum = 0.0;
|
---|
| 298 | for (var k = i; k < j; k++)
|
---|
| 299 | sum += B[k, j] * ((i == k) ? 1.0 : B[i, k]);
|
---|
| 300 | B[i, j] = -sum;
|
---|
| 301 | }
|
---|
| 302 |
|
---|
| 303 | #endregion
|
---|
| 304 |
|
---|
| 305 | #region final inversion
|
---|
| 306 |
|
---|
| 307 | for (var i = 0; i < length; i++)
|
---|
| 308 | for (var j = 0; j < length; j++)
|
---|
| 309 | {
|
---|
| 310 | var sum = 0.0;
|
---|
| 311 | for (var k = ((i > j) ? i : j); k < length; k++)
|
---|
| 312 | sum += ((j == k) ? 1.0 : B[j, k]) * B[k, i];
|
---|
| 313 | B[j, i] = sum;
|
---|
| 314 | }
|
---|
| 315 |
|
---|
| 316 | #endregion
|
---|
| 317 |
|
---|
| 318 | return B;
|
---|
| 319 | }
|
---|
| 320 | /// <summary>
|
---|
| 321 | /// Returns the determinant of matrix, A.
|
---|
| 322 | /// </summary>
|
---|
| 323 | /// <param name = "A">The input argument matrix. This matrix is unchanged by this function.</param>
|
---|
| 324 | /// <exception cref = "Exception"></exception>
|
---|
| 325 | /// <returns>a single value representing the matrix's determinant.</returns>
|
---|
| 326 | public static double determinant(double[,] A)
|
---|
| 327 | {
|
---|
| 328 | if (A == null) throw new Exception("The matrix, A, is null.");
|
---|
| 329 | var length = A.GetLength(0);
|
---|
| 330 | if (length != A.GetLength(1))
|
---|
| 331 | throw new Exception("The determinant is only possible for square matrices.");
|
---|
| 332 | if (length == 0) return 0.0;
|
---|
| 333 | if (length == 1) return A[0, 0];
|
---|
| 334 | if (length == 2) return (A[0, 0] * A[1, 1]) - (A[0, 1] * A[1, 0]);
|
---|
| 335 | if (length == 3)
|
---|
| 336 | return (A[0, 0] * A[1, 1] * A[2, 2])
|
---|
| 337 | + (A[0, 1] * A[1, 2] * A[2, 0])
|
---|
| 338 | + (A[0, 2] * A[1, 0] * A[2, 1])
|
---|
| 339 | - (A[0, 0] * A[1, 2] * A[2, 1])
|
---|
| 340 | - (A[0, 1] * A[1, 0] * A[2, 2])
|
---|
| 341 | - (A[0, 2] * A[1, 1] * A[2, 0]);
|
---|
| 342 | return determinantBig(A, length);
|
---|
| 343 | }
|
---|
| 344 |
|
---|
| 345 | /// <summary>
|
---|
| 346 | /// Modifies the matrix during the computation if the dimension > 3.
|
---|
| 347 | /// </summary>
|
---|
| 348 | /// <param name="A"></param>
|
---|
| 349 | /// <returns></returns>
|
---|
| 350 | public static double determinantDestructive(double[,] A, int dimension)
|
---|
| 351 | {
|
---|
| 352 | if (A == null) throw new Exception("The matrix, A, is null.");
|
---|
| 353 | var length = dimension;
|
---|
| 354 | //if (length != A.GetLength(1))
|
---|
| 355 | // throw new Exception("The determinant is only possible for square matrices.");
|
---|
| 356 | if (length == 0) return 0.0;
|
---|
| 357 | if (length == 1) return A[0, 0];
|
---|
| 358 | if (length == 2) return (A[0, 0] * A[1, 1]) - (A[0, 1] * A[1, 0]);
|
---|
| 359 | if (length == 3)
|
---|
| 360 | return (A[0, 0] * A[1, 1] * A[2, 2])
|
---|
| 361 | + (A[0, 1] * A[1, 2] * A[2, 0])
|
---|
| 362 | + (A[0, 2] * A[1, 0] * A[2, 1])
|
---|
| 363 | - (A[0, 0] * A[1, 2] * A[2, 1])
|
---|
| 364 | - (A[0, 1] * A[1, 0] * A[2, 2])
|
---|
| 365 | - (A[0, 2] * A[1, 1] * A[2, 0]);
|
---|
| 366 | return determinantBigDestructive(A, length);
|
---|
| 367 | }
|
---|
| 368 |
|
---|
| 369 | static double determinantBigDestructive(double[,] A, int length)
|
---|
| 370 | {
|
---|
| 371 | LUDecompositionInPlace(A, length);
|
---|
| 372 | var result = 1.0;
|
---|
| 373 | for (var i = 0; i < length; i++)
|
---|
| 374 | if (double.IsNaN(A[i, i]))
|
---|
| 375 | return 0;
|
---|
| 376 | else result *= A[i, i];
|
---|
| 377 | return result;
|
---|
| 378 | }
|
---|
| 379 |
|
---|
| 380 | /// <summary>
|
---|
| 381 | /// Returns the determinant of matrix, A. Only used internally for matrices larger than 3.
|
---|
| 382 | /// </summary>
|
---|
| 383 | /// <param name="A">The input argument matrix. This matrix is unchanged by this function.</param>
|
---|
| 384 | /// <param name="length">The length of the side of the square matrix.</param>
|
---|
| 385 | /// <returns>
|
---|
| 386 | /// a single value representing the matrix's determinant.
|
---|
| 387 | /// </returns>
|
---|
| 388 | public static double determinantBig(double[,] A, int length)
|
---|
| 389 | {
|
---|
| 390 | double[,] L, U;
|
---|
| 391 | LUDecomposition(A, out L, out U, length);
|
---|
| 392 | var result = 1.0;
|
---|
| 393 | for (var i = 0; i < length; i++)
|
---|
| 394 | if (double.IsNaN(L[i, i]))
|
---|
| 395 | return 0;
|
---|
| 396 | else result *= L[i, i];
|
---|
| 397 | return result;
|
---|
| 398 | }
|
---|
| 399 | /// <summary>
|
---|
| 400 | /// Returns the LU decomposition of A in a new matrix.
|
---|
| 401 | /// </summary>
|
---|
| 402 | /// <param name = "A">The matrix to invert. This matrix is unchanged by this function.</param>
|
---|
| 403 | /// <param name = "L">The L matrix is output where the diagonal elements are included and not (necessarily) equal to one.</param>
|
---|
| 404 | /// <param name = "U">The U matrix is output where the diagonal elements are all equal to one.</param>
|
---|
| 405 | /// <param name="length">The length of the number of rows/columns in the square matrix, A.</param>
|
---|
| 406 | public static void LUDecomposition(double[,] A, out double[,] L, out double[,] U, int length)
|
---|
| 407 | {
|
---|
| 408 | L = LUDecomposition(A, length);
|
---|
| 409 | U = new double[length, length];
|
---|
| 410 | for (var i = 0; i < length; i++)
|
---|
| 411 | {
|
---|
| 412 | U[i, i] = 1.0;
|
---|
| 413 | for (var j = i + 1; j < length; j++)
|
---|
| 414 | {
|
---|
| 415 | U[i, j] = L[i, j];
|
---|
| 416 | L[i, j] = 0.0;
|
---|
| 417 | }
|
---|
| 418 | }
|
---|
| 419 | }
|
---|
| 420 |
|
---|
| 421 | #endregion
|
---|
| 422 |
|
---|
| 423 | #region norm
|
---|
| 424 | /// <summary>
|
---|
| 425 | /// Returns to 2-norm (square root of the sum of squares of all terms)
|
---|
| 426 | /// of the vector, x.
|
---|
| 427 | /// </summary>
|
---|
| 428 | /// <param name="x">The vector, x.</param>
|
---|
| 429 | /// <param name="dontDoSqrt">if set to <c>true</c> [don't take the square root].</param>
|
---|
| 430 | /// <returns>Scalar value of 2-norm.</returns>
|
---|
| 431 | public static double norm2(double[] x, int dim, Boolean dontDoSqrt = false)
|
---|
| 432 | {
|
---|
| 433 | double norm = 0;
|
---|
| 434 | for (int i = 0; i < dim; i++)
|
---|
| 435 | {
|
---|
| 436 | var t = x[i];
|
---|
| 437 | norm += t * t;
|
---|
| 438 | }
|
---|
| 439 | return dontDoSqrt ? norm : Math.Sqrt(norm);
|
---|
| 440 | }
|
---|
| 441 | /// <summary>
|
---|
| 442 | /// Returns to normalized vector (has lenght or 2-norm of 1))
|
---|
| 443 | /// of the vector, x.
|
---|
| 444 | /// </summary>
|
---|
| 445 | /// <param name="x">The vector, x.</param>
|
---|
| 446 | /// <param name="length">The length of the vector.</param>
|
---|
| 447 | /// <returns>unit vector.</returns>
|
---|
| 448 | public static double[] normalize(double[] x, int length)
|
---|
| 449 | {
|
---|
| 450 | return divide(x, norm2(x, length), length);
|
---|
| 451 | }
|
---|
| 452 |
|
---|
| 453 | public static void normalizeInPlace(double[] x, int length)
|
---|
| 454 | {
|
---|
| 455 | double f = 1.0 / norm2(x, length);
|
---|
| 456 | for (int i = 0; i < length; i++) x[i] *= f;
|
---|
| 457 | }
|
---|
| 458 | #endregion
|
---|
| 459 |
|
---|
| 460 | #region make extract
|
---|
| 461 | /// <summary>
|
---|
| 462 | /// Gets a row of matrix, A.
|
---|
| 463 | /// </summary>
|
---|
| 464 | /// <param name = "rowIndex">The row index.</param>
|
---|
| 465 | /// <param name = "A">The matrix, A.</param>
|
---|
| 466 | /// <returns>A double array that contains the requested row</returns>
|
---|
| 467 | public static double[] GetRow(int rowIndex, double[,] A)
|
---|
| 468 | {
|
---|
| 469 | var numRows = A.GetLength(0);
|
---|
| 470 | var numCols = A.GetLength(1);
|
---|
| 471 | if ((rowIndex < 0) || (rowIndex >= numRows))
|
---|
| 472 | throw new Exception("MatrixMath Size Error: An index value of "
|
---|
| 473 | + rowIndex
|
---|
| 474 | + " for getRow is not in required range from 0 up to (but not including) "
|
---|
| 475 | + numRows + ".");
|
---|
| 476 | var v = new double[numCols];
|
---|
| 477 | for (var i = 0; i < numCols; i++)
|
---|
| 478 | v[i] = A[rowIndex, i];
|
---|
| 479 | return v;
|
---|
| 480 | }
|
---|
| 481 | /// <summary>
|
---|
| 482 | /// Sets/Replaces the given column of matrix A with the vector v.
|
---|
| 483 | /// </summary>
|
---|
| 484 | /// <param name = "colIndex">Index of the col.</param>
|
---|
| 485 | /// <param name = "A">The A.</param>
|
---|
| 486 | /// <param name = "v">The v.</param>
|
---|
| 487 | public static void SetColumn(int colIndex, double[,] A, IList<double> v)
|
---|
| 488 | {
|
---|
| 489 | var numRows = A.GetLength(0);
|
---|
| 490 | var numCols = A.GetLength(1);
|
---|
| 491 | if ((colIndex < 0) || (colIndex >= numCols))
|
---|
| 492 | throw new Exception("MatrixMath Size Error: An index value of "
|
---|
| 493 | + colIndex
|
---|
| 494 | + " for getColumn is not in required range from 0 up to (but not including) "
|
---|
| 495 | + numCols + ".");
|
---|
| 496 | for (var i = 0; i < numRows; i++)
|
---|
| 497 | A[i, colIndex] = v[i];
|
---|
| 498 | }
|
---|
| 499 | /// <summary>
|
---|
| 500 | /// Sets/Replaces the given row of matrix A with the vector v.
|
---|
| 501 | /// </summary>
|
---|
| 502 | /// <param name = "rowIndex">The index of the row, rowIndex.</param>
|
---|
| 503 | /// <param name = "A">The matrix, A.</param>
|
---|
| 504 | /// <param name = "v">The vector, v.</param>
|
---|
| 505 | public static void SetRow(int rowIndex, double[,] A, IList<double> v)
|
---|
| 506 | {
|
---|
| 507 | var numRows = A.GetLength(0);
|
---|
| 508 | var numCols = A.GetLength(1);
|
---|
| 509 | if ((rowIndex < 0) || (rowIndex >= numRows))
|
---|
| 510 | throw new Exception("MatrixMath Size Error: An index value of "
|
---|
| 511 | + rowIndex
|
---|
| 512 | + " for getRow is not in required range from 0 up to (but not including) "
|
---|
| 513 | + numRows + ".");
|
---|
| 514 | for (var i = 0; i < numCols; i++)
|
---|
| 515 | A[rowIndex, i] = v[i];
|
---|
| 516 | }
|
---|
| 517 | /// <summary>
|
---|
| 518 | /// Makes the zero vector.
|
---|
| 519 | /// </summary>
|
---|
| 520 | /// <param name = "p">The p.</param>
|
---|
| 521 | /// <returns></returns>
|
---|
| 522 | public static double[] makeZeroVector(int p)
|
---|
| 523 | {
|
---|
| 524 | if (p <= 0) throw new Exception("The size, p, must be a positive integer.");
|
---|
| 525 | return new double[p];
|
---|
| 526 | }
|
---|
| 527 |
|
---|
| 528 | #endregion
|
---|
| 529 |
|
---|
| 530 | #region add subtract multiply
|
---|
| 531 | /// <summary>
|
---|
| 532 | /// The cross product of two double vectors, A and B, which are of length, 2.
|
---|
| 533 | /// In actuality, there is no cross-product for 2D. This is shorthand for 2D systems
|
---|
| 534 | /// that are really simplifications of 3D. The returned scalar is actually the value in
|
---|
| 535 | /// the third (read: z) direction.
|
---|
| 536 | /// </summary>
|
---|
| 537 | /// <param name = "A">1D double Array, A</param>
|
---|
| 538 | /// <param name = "B">1D double Array, B</param>
|
---|
| 539 | /// <returns></returns>
|
---|
| 540 | public static double crossProduct2(IList<double> A, IList<double> B)
|
---|
| 541 | {
|
---|
| 542 | if (((A.Count() == 2) && (B.Count() == 2))
|
---|
| 543 | || ((A.Count() == 3) && (B.Count() == 3) && A[2] == 0.0 && B[2] == 0.0))
|
---|
| 544 | return A[0] * B[1] - B[0] * A[1];
|
---|
| 545 | throw new Exception("This cross product \"shortcut\" is only used with 2D vectors to get the single value in the,"
|
---|
| 546 | + "would be, Z-direction.");
|
---|
| 547 | }
|
---|
| 548 |
|
---|
| 549 | /// <summary>
|
---|
| 550 | /// The dot product of the two 1D double vectors A and B
|
---|
| 551 | /// </summary>
|
---|
| 552 | /// <param name="A">1D double Array, A</param>
|
---|
| 553 | /// <param name="B">1D double Array, B</param>
|
---|
| 554 | /// <param name="length">The length of both vectors A and B. This is an optional argument, but if it is already known
|
---|
| 555 | /// - there is a slight speed advantage to providing it.</param>
|
---|
| 556 | /// <returns>
|
---|
| 557 | /// A double value that contains the dot product
|
---|
| 558 | /// </returns>
|
---|
| 559 | public static double dotProduct(IList<double> A, IList<double> B, int length)
|
---|
| 560 | {
|
---|
| 561 | var c = 0.0;
|
---|
| 562 | for (var i = 0; i != length; i++)
|
---|
| 563 | c += A[i] * B[i];
|
---|
| 564 | return c;
|
---|
| 565 | }
|
---|
| 566 | /// <summary>
|
---|
| 567 | /// The dot product of the one 1D int vector and one 1D double vector
|
---|
| 568 | /// </summary>
|
---|
| 569 | /// <param name="A">1D int Array, A</param>
|
---|
| 570 | /// <param name="B">1D double Array, B</param>
|
---|
| 571 | /// <param name="length">The length of both vectors A and B. This is an optional argument, but if it is already known
|
---|
| 572 | /// - there is a slight speed advantage to providing it.</param>
|
---|
| 573 | /// <returns>
|
---|
| 574 | /// A double value that contains the dot product
|
---|
| 575 | /// </returns>
|
---|
| 576 | public static double dotProduct(IList<int> A, IList<double> B, int length)
|
---|
| 577 | {
|
---|
| 578 | var c = 0.0;
|
---|
| 579 | for (var i = 0; i != length; i++)
|
---|
| 580 | c += A[i] * B[i];
|
---|
| 581 | return c;
|
---|
| 582 | }
|
---|
| 583 | /// <summary>
|
---|
| 584 | /// Subtracts one vector (B) from the other (A). C = A - B.
|
---|
| 585 | /// </summary>
|
---|
| 586 | /// <param name = "A">The minuend vector, A (1D double)</param>
|
---|
| 587 | /// <param name = "B">The subtrahend vector, B (1D double)</param>
|
---|
| 588 | /// <param name="length">The length of the vectors.</param>
|
---|
| 589 | /// <returns>Returns the difference vector, C (1D double)</returns>
|
---|
| 590 | public static double[] subtract(IList<double> A, IList<double> B, int length)
|
---|
| 591 | {
|
---|
| 592 | var c = new double[length];
|
---|
| 593 | for (var i = 0; i != length; i++)
|
---|
| 594 | c[i] = A[i] - B[i];
|
---|
| 595 | return c;
|
---|
| 596 | }
|
---|
| 597 | /// <summary>
|
---|
| 598 | /// Adds arrays A and B
|
---|
| 599 | /// </summary>
|
---|
| 600 | /// <param name = "A">1D double array 1</param>
|
---|
| 601 | /// <param name = "B">1D double array 2</param>
|
---|
| 602 | /// <param name="length">The length of the array.</param>
|
---|
| 603 | /// <returns>1D double array that contains sum of vectros A and B</returns>
|
---|
| 604 | public static double[] add(IList<double> A, IList<double> B, int length)
|
---|
| 605 | {
|
---|
| 606 | var c = new double[length];
|
---|
| 607 | for (var i = 0; i != length; i++)
|
---|
| 608 | c[i] = A[i] + B[i];
|
---|
| 609 | return c;
|
---|
| 610 | }
|
---|
| 611 | /// <summary>
|
---|
| 612 | /// Divides all elements of a 1D double array by the double value.
|
---|
| 613 | /// </summary>
|
---|
| 614 | /// <param name="B">The vector to be divided</param>
|
---|
| 615 | /// <param name="a">The double value to be divided by, the divisor.</param>
|
---|
| 616 | /// <param name="length">The length of the vector B. This is an optional argument, but if it is already known
|
---|
| 617 | /// - there is a slight speed advantage to providing it.</param>
|
---|
| 618 | /// <returns>
|
---|
| 619 | /// A 1D double array that contains the product
|
---|
| 620 | /// </returns>
|
---|
| 621 | public static double[] divide(IList<double> B, double a, int length)
|
---|
| 622 | { return multiply((1 / a), B, length); }
|
---|
| 623 | /// <summary>
|
---|
| 624 | /// Multiplies all elements of a 1D double array with the double value.
|
---|
| 625 | /// </summary>
|
---|
| 626 | /// <param name="a">The double value to be multiplied</param>
|
---|
| 627 | /// <param name="B">The double vector to be multiplied with</param>
|
---|
| 628 | /// <param name="length">The length of the vector B. This is an optional argument, but if it is already known
|
---|
| 629 | /// - there is a slight speed advantage to providing it.</param>
|
---|
| 630 | /// <returns>
|
---|
| 631 | /// A 1D double array that contains the product
|
---|
| 632 | /// </returns>
|
---|
| 633 | public static double[] multiply(double a, IList<double> B, int length)
|
---|
| 634 | {
|
---|
| 635 | // scale vector B by the amount of scalar a
|
---|
| 636 | var c = new double[length];
|
---|
| 637 | for (var i = 0; i != length; i++)
|
---|
| 638 | c[i] = a * B[i];
|
---|
| 639 | return c;
|
---|
| 640 | }
|
---|
| 641 |
|
---|
| 642 | /// <summary>
|
---|
| 643 | /// Product of a matrix and a vector (2D double and 1D double)
|
---|
| 644 | /// </summary>
|
---|
| 645 | /// <param name = "A">2D double Array</param>
|
---|
| 646 | /// <param name = "B">1D double array - column vector (1 element row)</param>
|
---|
| 647 | /// <param name="numRows">The number of rows.</param>
|
---|
| 648 | /// <param name="numCols">The number of columns.</param>
|
---|
| 649 | /// <returns>A 1D double array that is the product of the two matrices A and B</returns>
|
---|
| 650 | public static double[] multiply(double[,] A, IList<double> B, int numRows, int numCols)
|
---|
| 651 | {
|
---|
| 652 | var C = new double[numRows];
|
---|
| 653 |
|
---|
| 654 | for (var i = 0; i != numRows; i++)
|
---|
| 655 | {
|
---|
| 656 | C[i] = 0.0;
|
---|
| 657 | for (var j = 0; j != numCols; j++)
|
---|
| 658 | C[i] += A[i, j] * B[j];
|
---|
| 659 | }
|
---|
| 660 | return C;
|
---|
| 661 | }
|
---|
| 662 |
|
---|
| 663 | public static void multiplyInto(double[,] A, double[] B, int numRows, int numCols, double[] target)
|
---|
| 664 | {
|
---|
| 665 | var C = target;
|
---|
| 666 |
|
---|
| 667 | for (var i = 0; i != numRows; i++)
|
---|
| 668 | {
|
---|
| 669 | C[i] = 0.0;
|
---|
| 670 | for (var j = 0; j != numCols; j++)
|
---|
| 671 | C[i] += A[i, j] * B[j];
|
---|
| 672 | }
|
---|
| 673 | }
|
---|
| 674 | /// <summary>
|
---|
| 675 | /// The cross product of two double vectors, A and B, which are of length, 3.
|
---|
| 676 | /// This is equivalent to calling crossProduct, but a slight speed advantage
|
---|
| 677 | /// may exist in skipping directly to this sub-function.
|
---|
| 678 | /// </summary>
|
---|
| 679 | /// <param name = "A">1D double Array, A</param>
|
---|
| 680 | /// <param name = "B">1D double Array, B</param>
|
---|
| 681 | /// <returns></returns>
|
---|
| 682 | public static double[] crossProduct3(IList<double> A, IList<double> B)
|
---|
| 683 | {
|
---|
| 684 | return new[]
|
---|
| 685 | {
|
---|
| 686 | A[1]*B[2] - B[1]*A[2],
|
---|
| 687 | A[2]*B[0] - B[2]*A[0],
|
---|
| 688 | A[0]*B[1] - B[0]*A[1]
|
---|
| 689 | };
|
---|
| 690 | }
|
---|
| 691 |
|
---|
| 692 | #endregion
|
---|
| 693 |
|
---|
| 694 |
|
---|
| 695 | public static double subtractAndDot(double[] n, double[] l, double[] r, int dim)
|
---|
| 696 | {
|
---|
| 697 | double acc = 0;
|
---|
| 698 | for (int i = 0; i < dim; i++)
|
---|
| 699 | {
|
---|
| 700 | double t = l[i] - r[i];
|
---|
| 701 | acc += n[i] * t;
|
---|
| 702 | }
|
---|
| 703 |
|
---|
| 704 | return acc;
|
---|
| 705 | }
|
---|
| 706 | }
|
---|
| 707 | } |
---|