1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 |
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Optimization;
|
---|
28 | using HeuristicLab.Parameters;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Analysis.AlgorithmBehavior.Analyzers {
|
---|
32 | [Item("MutationPerformanceAnalyzer", "An operator that analyzes the performance of mutation.")]
|
---|
33 | [StorableClass]
|
---|
34 | public class MutationPerformanceAnalyzer : InitializableOperator, IStatefulItem {
|
---|
35 | private const string ResultsParameterName = "Results";
|
---|
36 | private const string GenerationsParameterName = "Generations";
|
---|
37 |
|
---|
38 | #region Parameter properties
|
---|
39 | public ILookupParameter<ResultCollection> ResultsParameter {
|
---|
40 | get { return (ILookupParameter<ResultCollection>)Parameters[ResultsParameterName]; }
|
---|
41 | }
|
---|
42 | public ILookupParameter<IntValue> GenerationsParameter {
|
---|
43 | get { return (ILookupParameter<IntValue>)Parameters[GenerationsParameterName]; }
|
---|
44 | }
|
---|
45 | public ILookupParameter<DoubleValue> QualityAfterCrossoverParameter {
|
---|
46 | get { return (ILookupParameter<DoubleValue>)Parameters["QualityAfterCrossover"]; }
|
---|
47 | }
|
---|
48 | public ILookupParameter<DoubleValue> QualityAfterMutationParameter {
|
---|
49 | get { return (ILookupParameter<DoubleValue>)Parameters["QualityAfterMutation"]; }
|
---|
50 | }
|
---|
51 | public ILookupParameter<IItem> PermutationBeforeMutationParameter {
|
---|
52 | get { return (ILookupParameter<IItem>)Parameters["PermutationBeforeMutation"]; }
|
---|
53 | }
|
---|
54 | public ILookupParameter<IItem> PermutationAfterMutationParameter {
|
---|
55 | get { return (ILookupParameter<IItem>)Parameters["PermutationAfterMutation"]; }
|
---|
56 | }
|
---|
57 | public ILookupParameter<ItemCollection<IItem>> OperatorsParameter {
|
---|
58 | get { return (ILookupParameter<ItemCollection<IItem>>)Parameters["Operators"]; }
|
---|
59 | }
|
---|
60 | public IValueLookupParameter<BoolValue> MaximizationParameter {
|
---|
61 | get { return (IValueLookupParameter<BoolValue>)Parameters["Maximization"]; }
|
---|
62 | }
|
---|
63 | public IValueParameter<ISingleObjectiveSolutionSimilarityCalculator> SimilarityCalculatorParameter {
|
---|
64 | get { return (IValueParameter<ISingleObjectiveSolutionSimilarityCalculator>)Parameters["SimilarityCalculator"]; }
|
---|
65 | }
|
---|
66 | public ILookupParameter<DoubleValue> BestKnownQualityParameter {
|
---|
67 | get { return (ILookupParameter<DoubleValue>)Parameters["BestKnownQuality"]; }
|
---|
68 | }
|
---|
69 | public ILookupParameter<DoubleValue> WorstKnownQualityParameter {
|
---|
70 | get { return (ILookupParameter<DoubleValue>)Parameters["WorstKnownQuality"]; }
|
---|
71 | }
|
---|
72 | #endregion
|
---|
73 |
|
---|
74 | #region Properties
|
---|
75 | public ResultCollection Results {
|
---|
76 | get { return ResultsParameter.ActualValue; }
|
---|
77 | }
|
---|
78 | #endregion
|
---|
79 |
|
---|
80 | [Storable]
|
---|
81 | private DataTableHelper successHelper;
|
---|
82 | [Storable]
|
---|
83 | private ScatterPlotHelper diversityPlotHelper, qualityPlotHelper;
|
---|
84 | [Storable]
|
---|
85 | private int cnt = 0, lastGeneration = 0, success = 0;
|
---|
86 | [Storable]
|
---|
87 | private bool scalingFinished = false;
|
---|
88 |
|
---|
89 | [StorableConstructor]
|
---|
90 | private MutationPerformanceAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
91 | private MutationPerformanceAnalyzer(MutationPerformanceAnalyzer original, Cloner cloner)
|
---|
92 | : base(original, cloner) {
|
---|
93 | diversityPlotHelper = (ScatterPlotHelper)original.diversityPlotHelper.Clone(cloner);
|
---|
94 | qualityPlotHelper = (ScatterPlotHelper)original.qualityPlotHelper.Clone(cloner);
|
---|
95 | successHelper = (DataTableHelper)original.successHelper.Clone(cloner);
|
---|
96 | cnt = original.cnt;
|
---|
97 | lastGeneration = original.lastGeneration;
|
---|
98 | success = original.success;
|
---|
99 | scalingFinished = original.scalingFinished;
|
---|
100 | }
|
---|
101 |
|
---|
102 | public MutationPerformanceAnalyzer()
|
---|
103 | : base() {
|
---|
104 | Parameters.Add(new LookupParameter<ResultCollection>(ResultsParameterName, "The results collection where the analysis values should be stored."));
|
---|
105 | Parameters.Add(new LookupParameter<IntValue>(GenerationsParameterName, "Nr of generations."));
|
---|
106 |
|
---|
107 | Parameters.Add(new LookupParameter<DoubleValue>("QualityAfterCrossover", "The evaluated quality of the child solution."));
|
---|
108 | QualityAfterCrossoverParameter.ActualName = "TSPTourLength";
|
---|
109 |
|
---|
110 | Parameters.Add(new LookupParameter<DoubleValue>("QualityAfterMutation", "The evaluated quality of the child solution."));
|
---|
111 | QualityAfterMutationParameter.ActualName = "TSPTourLengthM";
|
---|
112 |
|
---|
113 | Parameters.Add(new LookupParameter<IItem>("PermutationBeforeMutation"));
|
---|
114 | PermutationBeforeMutationParameter.ActualName = "TSPTourClone";
|
---|
115 |
|
---|
116 | Parameters.Add(new LookupParameter<IItem>("PermutationAfterMutation"));
|
---|
117 | PermutationAfterMutationParameter.ActualName = "TSPTour";
|
---|
118 |
|
---|
119 | Parameters.Add(new ValueParameter<ISingleObjectiveSolutionSimilarityCalculator>("SimilarityCalculator"));
|
---|
120 | Parameters.Add(new LookupParameter<ItemCollection<IItem>>("Operators", "The operators and items that the problem provides to the algorithms."));
|
---|
121 | Parameters.Add(new ValueLookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem, false otherwise"));
|
---|
122 | Parameters.Add(new LookupParameter<DoubleValue>("BestKnownQuality", "The quality of the best known solution of this problem."));
|
---|
123 | Parameters.Add(new LookupParameter<DoubleValue>("WorstKnownQuality", "The quality of the worst known solution of this problem."));
|
---|
124 |
|
---|
125 | diversityPlotHelper = new ScatterPlotHelper(false, true, false, true);
|
---|
126 | qualityPlotHelper = new ScatterPlotHelper(false, true, true, true);
|
---|
127 | successHelper = new DataTableHelper();
|
---|
128 | }
|
---|
129 |
|
---|
130 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
131 | return new MutationPerformanceAnalyzer(this, cloner);
|
---|
132 | }
|
---|
133 |
|
---|
134 | protected override void InitializeAction() {
|
---|
135 | if (SimilarityCalculatorParameter.Value == null) {
|
---|
136 | SimilarityCalculatorParameter.Value = OperatorsParameter.ActualValue.OfType<ISingleObjectiveSolutionSimilarityCalculator>().FirstOrDefault();
|
---|
137 | }
|
---|
138 | qualityPlotHelper.InitializePlot(Results, "Mutation Performance compared to parent", "Solution Index", "Absolut Quality Difference");
|
---|
139 | diversityPlotHelper.InitializePlot(Results, "Mutation Diversity", "Solution Index", "Diversity");
|
---|
140 | successHelper.InitializeChart(Results, "Successfull Mutations", new string[] { "Successfull Mutations per Generation" });
|
---|
141 | Reset();
|
---|
142 | }
|
---|
143 |
|
---|
144 | public override IOperation Apply() {
|
---|
145 | Initialize();
|
---|
146 | Point2D<double> curPoint, divPoint;
|
---|
147 |
|
---|
148 | var qualityCX = QualityAfterCrossoverParameter.ActualValue.Value;
|
---|
149 | var qualityM = QualityAfterMutationParameter.ActualValue.Value;
|
---|
150 | var solutionBefore = PermutationBeforeMutationParameter.ActualValue;
|
---|
151 | var solutionAfter = PermutationAfterMutationParameter.ActualValue;
|
---|
152 |
|
---|
153 | Scope permutationBeforeScope = new Scope();
|
---|
154 | Scope permutationAfterScope = new Scope();
|
---|
155 | permutationBeforeScope.Variables.Add(new Variable(PermutationAfterMutationParameter.ActualName, solutionBefore));
|
---|
156 | permutationAfterScope.Variables.Add(new Variable(PermutationAfterMutationParameter.ActualName, solutionAfter));
|
---|
157 |
|
---|
158 | divPoint = new Point2D<double>(cnt, SimilarityCalculatorParameter.Value.CalculateSolutionSimilarity(permutationBeforeScope, permutationAfterScope));
|
---|
159 | curPoint = new Point2D<double>(cnt++, qualityCX - qualityM);
|
---|
160 |
|
---|
161 | string curGenStr = GenerationsParameter.ActualValue.Value.ToString();
|
---|
162 |
|
---|
163 | qualityPlotHelper.AddPoint(curGenStr, curPoint);
|
---|
164 | diversityPlotHelper.AddPoint(curGenStr, divPoint);
|
---|
165 |
|
---|
166 | if (GenerationsParameter.ActualValue.Value == lastGeneration) {
|
---|
167 | CountSuccess(qualityCX, qualityM);
|
---|
168 | }
|
---|
169 |
|
---|
170 | if (WorstKnownQualityParameter.ActualValue != null && !scalingFinished) {
|
---|
171 | scalingFinished = true;
|
---|
172 | double bkQuality = BestKnownQualityParameter.ActualValue.Value;
|
---|
173 | double wkQuality = WorstKnownQualityParameter.ActualValue.Value;
|
---|
174 |
|
---|
175 | if (MaximizationParameter.ActualValue.Value) {
|
---|
176 | if (qualityPlotHelper.Max == double.MinValue) {
|
---|
177 | qualityPlotHelper.Max = bkQuality - wkQuality;
|
---|
178 | qualityPlotHelper.Min = 0;
|
---|
179 | }
|
---|
180 | } else {
|
---|
181 | if (qualityPlotHelper.Min == double.MaxValue) {
|
---|
182 | qualityPlotHelper.Max = wkQuality - bkQuality;
|
---|
183 | qualityPlotHelper.Min = 0;
|
---|
184 | }
|
---|
185 | }
|
---|
186 | }
|
---|
187 |
|
---|
188 |
|
---|
189 | if (GenerationsParameter.ActualValue.Value != 0) {
|
---|
190 | if (GenerationsParameter.ActualValue.Value > lastGeneration) {
|
---|
191 | if (cnt > 1) {
|
---|
192 | successHelper.AddPoint((double)success / (cnt - 1));
|
---|
193 | } else {
|
---|
194 | successHelper.AddPoint(0.0);
|
---|
195 | }
|
---|
196 |
|
---|
197 | Reset();
|
---|
198 | CountSuccess(qualityCX, qualityM);
|
---|
199 | }
|
---|
200 | }
|
---|
201 |
|
---|
202 | return base.Apply();
|
---|
203 | }
|
---|
204 |
|
---|
205 | private void Reset() {
|
---|
206 | cnt = 0;
|
---|
207 | lastGeneration = GenerationsParameter.ActualValue.Value;
|
---|
208 | success = 0;
|
---|
209 | }
|
---|
210 |
|
---|
211 | public override void ClearState() {
|
---|
212 | qualityPlotHelper.CleanUp();
|
---|
213 | diversityPlotHelper.CleanUp();
|
---|
214 | successHelper.CleanUpAndCompressData();
|
---|
215 | scalingFinished = false;
|
---|
216 | }
|
---|
217 |
|
---|
218 | private void CountSuccess(double qualityCX, double qualityM) {
|
---|
219 | if (!MaximizationParameter.ActualValue.Value && qualityCX > qualityM) {
|
---|
220 | success++;
|
---|
221 | }
|
---|
222 |
|
---|
223 | if (MaximizationParameter.ActualValue.Value && qualityCX < qualityM) {
|
---|
224 | success++;
|
---|
225 | }
|
---|
226 | }
|
---|
227 | }
|
---|
228 | }
|
---|