1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 |
|
---|
26 | namespace HeuristicLab.Analysis.AlgorithmBehavior.Analyzers {
|
---|
27 | /*
|
---|
28 | * Calculate Convex Hull using Linear Programming as described in
|
---|
29 | * J.B. Rosen et. al., 1989, Efficient computation of convex hull in Rd
|
---|
30 | * and
|
---|
31 | * P.M. Pardalos et. al., 1995,
|
---|
32 | * Linear programming approaches to the convex hull problem in Rm
|
---|
33 | *
|
---|
34 | */
|
---|
35 | public static class LPHull {
|
---|
36 | public static List<double[]> Calculate(double[][] inputs) {
|
---|
37 | List<double[]> C = new List<double[]>();
|
---|
38 | List<double[]> E = new List<double[]>();
|
---|
39 |
|
---|
40 | //Phase 1
|
---|
41 | double[][] A = SortA(inputs);
|
---|
42 |
|
---|
43 | //Phase 2
|
---|
44 | C.Add(A[0]);
|
---|
45 | for (int i = 1; i < A.Length; i++) {
|
---|
46 | C.Add(A[i]);
|
---|
47 | if (!EXT(C, A[i], C.Count - 1)) {
|
---|
48 | C.Remove(A[i]);
|
---|
49 | }
|
---|
50 | }
|
---|
51 |
|
---|
52 | //Phase 3
|
---|
53 | for (int i = 0; i < C.Count; i++) {
|
---|
54 | if (EXT(C, C[i], i)) {
|
---|
55 | E.Add(C[i]);
|
---|
56 | }
|
---|
57 | }
|
---|
58 |
|
---|
59 | return E;
|
---|
60 | }
|
---|
61 |
|
---|
62 | //sort A decreasing by distance to center of polytope
|
---|
63 | public static double[][] SortA(double[][] A) {
|
---|
64 | int length = A[0].Length;
|
---|
65 | double[] maxs = new double[length];
|
---|
66 | double[] mins = new double[length];
|
---|
67 | double[][] sortedA = new double[A.Length][];
|
---|
68 |
|
---|
69 | for (int i = 0; i < maxs.Length; i++) {
|
---|
70 | maxs[i] = double.MinValue;
|
---|
71 | mins[i] = double.MaxValue;
|
---|
72 | }
|
---|
73 |
|
---|
74 | for (int i = 0; i < A.Length; i++) {
|
---|
75 | for (int j = 0; j < A[i].Length; j++) {
|
---|
76 | if (A[i][j] > maxs[j]) maxs[j] = A[i][j];
|
---|
77 | if (A[i][j] < mins[j]) mins[j] = A[i][j];
|
---|
78 | }
|
---|
79 | }
|
---|
80 |
|
---|
81 | double[] d = new double[length];
|
---|
82 | double[] r = new double[length];
|
---|
83 |
|
---|
84 | //calculate center
|
---|
85 | for (int i = 0; i < length; i++) {
|
---|
86 | d[i] = (maxs[i] + mins[i]) / 2.0;
|
---|
87 | }
|
---|
88 |
|
---|
89 | //calculate length of sides of rectangle
|
---|
90 | for (int i = 0; i < length; i++) {
|
---|
91 | r[i] = maxs[i] - mins[i];
|
---|
92 | }
|
---|
93 |
|
---|
94 | VertexComparer comparer = new VertexComparer();
|
---|
95 | comparer.d = d;
|
---|
96 | comparer.r = r;
|
---|
97 | sortedA = A.OrderByDescending(x => x, comparer).ToArray();
|
---|
98 |
|
---|
99 | return sortedA;
|
---|
100 | }
|
---|
101 |
|
---|
102 | /// <summary>
|
---|
103 | /// Checks if alpha is an extreme point (lies on convex hull) of A.
|
---|
104 | /// Returns true if alpha is an extreme point, else false.
|
---|
105 | /// </summary>
|
---|
106 | public static bool EXT(List<double[]> A, double[] alpha, int aIdx = -1) {
|
---|
107 | alglib.minbleicstate state;
|
---|
108 | int N = alpha.Length;
|
---|
109 | int K = A.Count;
|
---|
110 | double[] init = new double[K];
|
---|
111 | double[] lowerBound = new double[K];
|
---|
112 | double[] upperBound = new double[K];
|
---|
113 | double[] x;
|
---|
114 | alglib.minbleicreport rep;
|
---|
115 | double[,] c = new double[N + 1, K + 1];
|
---|
116 | int[] ct = new int[N + 1]; //init with 0, means equal
|
---|
117 |
|
---|
118 | for (int i = 0; i < K; i++) {
|
---|
119 | init[i] = 0.0;
|
---|
120 | lowerBound[i] = 0.0;
|
---|
121 | upperBound[i] = double.MaxValue;
|
---|
122 | }
|
---|
123 | init[aIdx] = 1.0;
|
---|
124 |
|
---|
125 | //last column gets b
|
---|
126 | for (int i = 0; i < N; i++) {
|
---|
127 | c[i, K] = alpha[i];
|
---|
128 | }
|
---|
129 | //sum(x) == 1 constraint
|
---|
130 | for (int i = 0; i < K + 1; i++) {
|
---|
131 | c[N, i] = 1.0;
|
---|
132 | }
|
---|
133 |
|
---|
134 | //other constraints
|
---|
135 | for (int i = 0; i < K; i++) {
|
---|
136 | for (int j = 0; j < N; j++) {
|
---|
137 | c[j, i] = A[i][j];
|
---|
138 | }
|
---|
139 | }
|
---|
140 |
|
---|
141 | alglib.minbleiccreate(init, out state);
|
---|
142 | alglib.minbleicsetbc(state, lowerBound, upperBound);
|
---|
143 | alglib.minbleicsetlc(state, c, ct);
|
---|
144 | alglib.minbleicsetcond(state, 0.0, 0.0, 0.0, 0);
|
---|
145 | alglib.minbleicoptimize(state, Func, null, aIdx);
|
---|
146 | alglib.minbleicresults(state, out x, out rep);
|
---|
147 |
|
---|
148 | if (rep.terminationtype < 0) throw new ArgumentException("minbleic terminated with error");
|
---|
149 | if (rep.terminationtype == 5) Console.WriteLine("max number of iterations reached in minbleic");
|
---|
150 | return x[aIdx] >= 1.0;
|
---|
151 | }
|
---|
152 |
|
---|
153 | private static void Func(double[] x, ref double func, double[] grad, object obj) {
|
---|
154 | int aIdx = (int)obj;
|
---|
155 |
|
---|
156 | func = x[aIdx];
|
---|
157 | for (int i = 0; i < grad.Length; i++) {
|
---|
158 | grad[i] = 0;
|
---|
159 | }
|
---|
160 | grad[aIdx] = 1;
|
---|
161 | }
|
---|
162 | }
|
---|
163 | }
|
---|