Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Analysis.AlgorithmBehavior/HeuristicLab.Analysis.AlgorithmBehavior.Analyzers/3.3/DistanceMatrixToPoints.cs @ 10589

Last change on this file since 10589 was 10139, checked in by ascheibe, 11 years ago

#1886 fixed a bug in the PermutationConvexHullModifier

File size: 7.9 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Linq;
24using HeuristicLab.Common;
25
26namespace HeuristicLab.Analysis.AlgorithmBehavior.Analyzers {
27  public static class DistanceMatrixToPoints {
28    /*
29     *  Calculates a matrix of n-dimensional points from the distance matrix dm as described in
30     *  http://math.stackexchange.com/questions/156161/finding-the-coordinates-of-points-from-distance-matrix/423898#423898
31     *  and
32     *  http://stackoverflow.com/questions/10963054/finding-the-coordinates-of-points-from-distance-matrix/17177833#17177833
33     *
34     */
35    public static double[][] ConvertDistanceMatrixToPoints(double[][] dm, int k = 2) {
36      double[][] points = new double[dm.Length][];
37      double[,] m = new double[dm.Length, dm.Length];
38      double[] q = new double[dm.Length]; //eigenvalues
39      double[,] v = new double[dm.Length, dm.Length]; //eigenvectors
40
41      for (int i = 0; i < dm.Length; i++) {
42        for (int j = 0; j < dm.Length; j++) {
43          m[i, j] = 0.5 * (Math.Pow(dm[0][j], 2) + Math.Pow(dm[i][0], 2) - Math.Pow(dm[i][j], 2));
44        }
45      }
46
47      bool res = alglib.smatrixevd(m, dm.Length, 1, true, out q, out v);
48      if (!res) throw new Exception("Eigenvalue computation did not converge!");
49
50      //TODO: this should also work without allocating memory for ev and evec
51      double[] ev = new double[k];
52      double[][] evec = new double[dm.Length][];
53      AllocArray(evec, k);
54      Array.Copy(q, q.Length - k, ev, 0, k);
55      for (int i = 0; i < k; i++) {
56        for (int j = 0; j < dm.Length; j++) {
57          evec[j][i] = v[j, i + (q.Length - k)];
58        }
59      }
60
61      double k1 = SumIfLZero(ev);
62      if (k1 < k) {
63        throw new Exception("Zero-eigenvalues detected. This leads to a degenerate point set. Use constants. ");
64        //TODO: handling of this case; implement adding of constants
65      }
66
67      AllocArray(points, k);
68      for (int i = 0; i < k; i++) {
69        for (int j = 0; j < dm.Length; j++) {
70          points[j][i] = Math.Sqrt(ev[i]) * evec[j][i];
71        }
72      }
73      return points;
74    }
75
76    //based on R's cmdscale
77    public static double[][] MetricMDS(double[][] dm, int k = 2, bool add = false) {
78      int n = dm.Length;
79      double[][] points = new double[n][];
80      double[,] b = new double[n, n];
81      double[] q; //eigenvalues
82      double[,] v; //eigenvectors
83
84      if (n < k)
85        throw new ArgumentException("Distance matrix length must be greater than dimension", "k");
86
87      double[][] x = SquareMatrix(dm);
88      CenterMatrix(x);
89
90      // solve additive constant problem
91      if (add) {
92        int[] i = Enumerable.Range(0, n).ToArray();
93        int[] i2 = Enumerable.Range(0, n).Select(y => y + n).ToArray();
94
95        double[,] Z = new double[n * 2, n * 2];
96
97        for (int j = 0; j < i.Length; j++) {
98          Z[i2[j], i[j]] = -1.0;
99        }
100
101        for (int j = 0; j < n; j++) {
102          for (int l = 0; l < n; l++) {
103            Z[i[j], i2[l]] = -1.0 * x[j][l];
104          }
105        }
106
107        double[][] centeredD = DoubleMatrix(dm);
108        CenterMatrix(centeredD);
109        for (int j = 0; j < n; j++) {
110          for (int l = 0; l < n; l++) {
111            Z[i2[j], i2[l]] = centeredD[j][l];
112          }
113        }
114
115        double[] wr;
116        double[] wi;
117        double[,] vl;
118        double[,] vr;
119        bool ret = alglib.rmatrixevd(Z, 2 * n, 0, out wr, out wi, out vl, out vr);
120        double c = wr.Max();
121
122        x = new double[n][];
123        AllocArray(x, n);
124
125        for (int j = 0; j < n; j++) {
126          for (int l = 0; l < n; l++) {
127            if (j != l) {
128              x[j][l] = Math.Pow(dm[j][l] + c, 2);
129            }
130          }
131        }
132        CenterMatrix(x);
133      }
134
135      ChangeSignAndHalve(x);
136
137      //TODO: optimize memory consumption
138      for (int i = 0; i < n; i++) {
139        for (int j = 0; j < n; j++) {
140          b[i, j] = x[i][j];
141        }
142      }
143
144      bool res = alglib.smatrixevd(b, n, 1, true, out q, out v);
145      if (!res) throw new Exception("Eigenvalue computation did not converge!");
146
147      //TODO: this should also work without allocating memory for ev and evec
148      double[] ev = new double[k];
149      double[][] evec = new double[n][];
150      AllocArray(evec, k);
151      Array.Copy(q, q.Length - k, ev, 0, k);
152      for (int i = 0; i < k; i++) {
153        for (int j = 0; j < n; j++) {
154          evec[j][i] = v[j, i + (q.Length - k)];
155        }
156      }
157
158      int k1 = SumIfLZero(ev);
159      if (k1 < k) {
160        throw new Exception("Zero-eigenvalues detected. This leads to a degenerate point set. Use constants. ");
161      }
162
163      AllocArray(points, k);
164      for (int i = 0; i < k; i++) {
165        for (int j = 0; j < n; j++) {
166          points[j][i] = Math.Sqrt(ev[i]) * evec[j][i];
167        }
168      }
169      return points;
170    }
171
172    //TODO: refactor the following methods into something sane
173    private static double[][] SquareMatrix(double[][] a) {
174      int n = a.Length;
175      double[][] newA = new double[a.Length][];
176
177      for (int i = 0; i < n; i++) {
178        newA[i] = new double[a.Length];
179        for (int j = 0; j < n; j++) {
180          newA[i][j] = Math.Pow(a[i][j], 2.0);
181        }
182      }
183      return newA;
184    }
185
186    private static double[][] DoubleMatrix(double[][] a) {
187      int n = a.Length;
188      double[][] newA = new double[a.Length][];
189
190      for (int i = 0; i < n; i++) {
191        newA[i] = new double[a.Length];
192        for (int j = 0; j < n; j++) {
193          newA[i][j] = a[i][j] * 2.0;
194        }
195      }
196      return newA;
197    }
198
199    //based on R's DoubleCentre
200    private static void CenterMatrix(double[][] a) {
201      int n = a.Length;
202
203      //reduce lines by line avg
204      for (int i = 0; i < n; i++) {
205        double sum = 0;
206        for (int j = 0; j < n; j++) sum += a[i][j];
207        sum /= n;
208        for (int j = 0; j < n; j++) a[i][j] -= sum;
209      }
210
211      //reduce cols by col avg
212      for (int j = 0; j < n; j++) {
213        double sum = 0;
214        for (int i = 0; i < n; i++) sum += a[i][j];
215        sum /= n;
216        for (int i = 0; i < n; i++) a[i][j] -= sum;
217      }
218    }
219
220    private static void ChangeSignAndHalve(double[][] a) {
221      int n = a.Length;
222
223      for (int i = 0; i < n; i++) {
224        for (int j = 0; j < n; j++) {
225          a[i][j] = (-1.0 * a[i][j]) / 2;
226        }
227      }
228    }
229
230    private static int SumIfLZero(double[] a) {
231      return a.Count(x => x > 0.0 && !x.IsAlmost(0.0));
232    }
233
234    private static void AllocArray(double[][] arr, int size) {
235      for (int i = 0; i < arr.Length; i++) {
236        arr[i] = new double[size];
237      }
238    }
239
240    public static double[][] TransformToDistances(double[][] similarityMatrix) {
241      double[][] dm = new double[similarityMatrix.Length][];
242
243      for (int i = 0; i < dm.Length; i++) {
244        dm[i] = new double[similarityMatrix.Length];
245        for (int j = 0; j < dm.Length; j++) {
246          dm[i][j] = Math.Sqrt(similarityMatrix[i][i] + similarityMatrix[j][j] - 2 * similarityMatrix[i][j]);
247        }
248      }
249
250      return dm;
251    }
252  }
253}
Note: See TracBrowser for help on using the repository browser.