1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using Mehroz;
|
---|
26 | using MIConvexHull;
|
---|
27 |
|
---|
28 | namespace HeuristicLab.Analysis.AlgorithmBehavior.Analyzers {
|
---|
29 | public static class ConvexHullMeasures {
|
---|
30 | //Calculates the volumne of a d-simplex
|
---|
31 | public static double CalculateSimplexVolume(List<double[]> simplex) {
|
---|
32 | int dim = simplex.First().Length;
|
---|
33 | double[,] diffs = new double[dim, dim];
|
---|
34 |
|
---|
35 | for (int i = 1; i < simplex.Count; i++) {
|
---|
36 | for (int j = 0; j < dim; j++) {
|
---|
37 | diffs[j, i - 1] = simplex[i][j] - simplex[0][j];
|
---|
38 | }
|
---|
39 | }
|
---|
40 |
|
---|
41 | double det = Math.Abs(alglib.rmatrixdet(diffs));
|
---|
42 | double result = det / dim.Fact();
|
---|
43 |
|
---|
44 | return result;
|
---|
45 | }
|
---|
46 |
|
---|
47 | public static Fraction CalculateSimplexVolumeBig(List<double[]> simplex) {
|
---|
48 | int dim = simplex.First().Length;
|
---|
49 | double[,] diffs = new double[dim, dim];
|
---|
50 |
|
---|
51 | for (int i = 1; i < simplex.Count; i++) {
|
---|
52 | for (int j = 0; j < dim; j++) {
|
---|
53 | diffs[j, i - 1] = simplex[i][j] - simplex[0][j];
|
---|
54 | }
|
---|
55 | }
|
---|
56 |
|
---|
57 | //calculate determinante from lu decomposition
|
---|
58 | int[] pivots = null;
|
---|
59 | alglib.rmatrixlu(ref diffs, dim, dim, out pivots);
|
---|
60 |
|
---|
61 | Fraction det = 1;
|
---|
62 | for (int i = 0; i < dim; i++) {
|
---|
63 | det = det * diffs[i, i];
|
---|
64 | }
|
---|
65 |
|
---|
66 | if (det < 0)
|
---|
67 | det = -1 * det;
|
---|
68 |
|
---|
69 | Fraction result = det / dim.Fact();
|
---|
70 | return result;
|
---|
71 | }
|
---|
72 |
|
---|
73 | //calculates the volume of a convex d-polytope
|
---|
74 | //decomposition based on delaunay triangulation
|
---|
75 | public static double CalculateVolume(List<double[]> convexHull) {
|
---|
76 | double volume = 0.0;
|
---|
77 |
|
---|
78 | int dim = convexHull.First().Length;
|
---|
79 | if (dim > convexHull.Count)
|
---|
80 | throw new ArgumentException("Nr. of points for volume calculation must be greater than dimension", "convexHull");
|
---|
81 |
|
---|
82 | ITriangulation<DefaultVertex, DefaultTriangulationCell<DefaultVertex>> triangulation = null;
|
---|
83 | try {
|
---|
84 | //Under certain circumstances MIConvexHull is not able to calculate the triangulation
|
---|
85 | triangulation = Triangulation.CreateDelaunay(ConvertToVertex(convexHull));
|
---|
86 | }
|
---|
87 | catch {
|
---|
88 | return double.NaN;
|
---|
89 | }
|
---|
90 | var simplices = ConvertFromTriangulation(triangulation);
|
---|
91 | foreach (var simplex in simplices) {
|
---|
92 | volume += CalculateSimplexVolume(simplex.ToList());
|
---|
93 | }
|
---|
94 |
|
---|
95 | return volume;
|
---|
96 | }
|
---|
97 |
|
---|
98 | public static Fraction CalculateVolumeBig(List<double[]> convexHull) {
|
---|
99 | Fraction volume = new Fraction(0.0);
|
---|
100 |
|
---|
101 | int dim = convexHull.First().Length;
|
---|
102 | if (dim > convexHull.Count)
|
---|
103 | throw new ArgumentException("Nr. of points for volume calculation must be greater than dimension", "convexHull");
|
---|
104 |
|
---|
105 | ITriangulation<DefaultVertex, DefaultTriangulationCell<DefaultVertex>> triangulation = null;
|
---|
106 | try {
|
---|
107 | //Under certain circumstances MIConvexHull is not able to calculate the triangulation
|
---|
108 | triangulation = Triangulation.CreateDelaunay(ConvertToVertex(convexHull));
|
---|
109 | }
|
---|
110 | catch {
|
---|
111 | return Fraction.NaN;
|
---|
112 | }
|
---|
113 | var simplices = ConvertFromTriangulation(triangulation);
|
---|
114 | foreach (var simplex in simplices) {
|
---|
115 | volume += CalculateSimplexVolumeBig(simplex.ToList());
|
---|
116 | }
|
---|
117 |
|
---|
118 | return volume;
|
---|
119 | }
|
---|
120 |
|
---|
121 | private static List<double[][]> ConvertFromTriangulation(ITriangulation<DefaultVertex, DefaultTriangulationCell<DefaultVertex>> triangulation) {
|
---|
122 | List<double[][]> results = new List<double[][]>();
|
---|
123 |
|
---|
124 | foreach (var cell in triangulation.Cells) {
|
---|
125 | results.Add(cell.Vertices.Select(x => x.Position).ToArray());
|
---|
126 | }
|
---|
127 |
|
---|
128 | return results;
|
---|
129 | }
|
---|
130 |
|
---|
131 | private static List<DefaultVertex> ConvertToVertex(List<double[]> data) {
|
---|
132 | List<DefaultVertex> result = new List<DefaultVertex>();
|
---|
133 | for (int i = 0; i < data.Count(); i++) {
|
---|
134 | double[] d = data[i];
|
---|
135 | DefaultVertex vertex = new DefaultVertex();
|
---|
136 | vertex.Position = d;
|
---|
137 | result.Add(vertex);
|
---|
138 | }
|
---|
139 | return result;
|
---|
140 | }
|
---|
141 |
|
---|
142 | public static double[] CalculateCentroids(List<double[]> convexHull) {
|
---|
143 | int n = convexHull.Count;
|
---|
144 | int dim = convexHull.First().Length;
|
---|
145 | double[] centroid = new double[dim];
|
---|
146 |
|
---|
147 | for (int i = 0; i < dim; i++) {
|
---|
148 | for (int j = 0; j < n; j++) {
|
---|
149 | centroid[i] += convexHull[j][i];
|
---|
150 | }
|
---|
151 | centroid[i] /= n;
|
---|
152 | }
|
---|
153 | return centroid;
|
---|
154 | }
|
---|
155 |
|
---|
156 | //measures to calculate: AVG, SUM, STD.DEV
|
---|
157 | public static double[] CalculateMovementDistances(List<double[]> centroids) {
|
---|
158 | double[] distances = new double[centroids.Count - 1];
|
---|
159 |
|
---|
160 | // it is assumed that the centroids are sorted chronological
|
---|
161 | for (int i = 0; i < centroids.Count - 1; i++) {
|
---|
162 | distances[i] = centroids[i].EuclideanDistance(centroids[i + 1]);
|
---|
163 | }
|
---|
164 |
|
---|
165 | return distances;
|
---|
166 | }
|
---|
167 |
|
---|
168 | public static double CalculateOverallMovementDistances(List<double[]> centroids) {
|
---|
169 | // it is assumed that the centroids are sorted chronological
|
---|
170 | return centroids[0].EuclideanDistance(centroids[centroids.Count - 1]);
|
---|
171 | }
|
---|
172 |
|
---|
173 | //calculate theta from two vectors (dot product)
|
---|
174 | public static double CalculateTheta(double[] a, double[] b) {
|
---|
175 | return Math.Acos(a.DotProduct(b) / (a.EuclideanNorm() * b.EuclideanNorm()));
|
---|
176 | }
|
---|
177 |
|
---|
178 | //calculate theta using law of cosines
|
---|
179 | public static double CalculateTheta(double[] a, double[] b, double[] c) {
|
---|
180 | double ab = a.EuclideanDistance(b);
|
---|
181 | double bc = b.EuclideanDistance(c);
|
---|
182 | double ca = c.EuclideanDistance(a);
|
---|
183 |
|
---|
184 | //return degrees
|
---|
185 | return Math.Acos((ab * ab + bc * bc - ca * ca) / (2 * ab * bc)) * 180.0 / Math.PI;
|
---|
186 | }
|
---|
187 |
|
---|
188 | //measures to calculate: AVG, SUM, STD.DEV
|
---|
189 | public static double[] CalculateCentroidsMotion(List<double[]> centroids) {
|
---|
190 | double[] thetas = new double[centroids.Count - 2];
|
---|
191 |
|
---|
192 | for (int i = 1; i < centroids.Count - 1; i++) {
|
---|
193 | thetas[i - 1] = CalculateTheta(centroids[i - 1], centroids[i], centroids[i + 1]);
|
---|
194 | }
|
---|
195 |
|
---|
196 | return thetas;
|
---|
197 | }
|
---|
198 |
|
---|
199 | public static double CalculateMaxDiameter(List<double[]> convexHull) {
|
---|
200 | double maxDist = double.MinValue;
|
---|
201 |
|
---|
202 | for (int i = 0; i < convexHull.Count; i++) {
|
---|
203 | for (int j = 0; j < convexHull.Count; j++) {
|
---|
204 | if (i != j) {
|
---|
205 | double dist = convexHull[i].EuclideanDistance(convexHull[j]);
|
---|
206 | if (dist > maxDist)
|
---|
207 | maxDist = dist;
|
---|
208 | }
|
---|
209 | }
|
---|
210 | }
|
---|
211 | return maxDist;
|
---|
212 | }
|
---|
213 |
|
---|
214 | private static List<double[]> GenerateHyperCube(double[] bounds, int dim) {
|
---|
215 | if (bounds.Length != 2)
|
---|
216 | throw new ArgumentException("Only bounds of length 2 are supported!", "bounds");
|
---|
217 |
|
---|
218 | int numPoints = (int)Math.Pow(2, dim);
|
---|
219 |
|
---|
220 | var hyperCube = new List<double[]>(numPoints);
|
---|
221 | var binaryVectors = new List<string>(numPoints);
|
---|
222 | for (int i = 0; i < numPoints; i++) {
|
---|
223 | string binary = Convert.ToString(i, 2);
|
---|
224 | binaryVectors.Add(binary);
|
---|
225 | }
|
---|
226 |
|
---|
227 | for (int i = 0; i < numPoints; i++) {
|
---|
228 | for (int j = 0; j < dim - binaryVectors[i].Length; j++) {
|
---|
229 | //TODO: do this properly
|
---|
230 | binaryVectors[i] = "0" + binaryVectors[i];
|
---|
231 | }
|
---|
232 | }
|
---|
233 |
|
---|
234 | foreach (var binaryVector in binaryVectors) {
|
---|
235 | double[] point = new double[dim];
|
---|
236 | for (int i = 0; i < binaryVector.Length; i++) {
|
---|
237 | if (binaryVector[i] == '0') {
|
---|
238 | point[i] = bounds[0];
|
---|
239 | } else {
|
---|
240 | point[i] = bounds[1];
|
---|
241 | }
|
---|
242 | }
|
---|
243 | hyperCube.Add(point);
|
---|
244 | }
|
---|
245 | return hyperCube;
|
---|
246 | }
|
---|
247 |
|
---|
248 | public static double CalculateHypercubeVolume(double[] bounds, int dim) {
|
---|
249 | //this is not very smart...
|
---|
250 | //return CalculateVolume(GenerateHyperCube(bounds, dim));
|
---|
251 | double diff = bounds[1] - bounds[0];
|
---|
252 | return Math.Pow(diff, dim);
|
---|
253 | }
|
---|
254 |
|
---|
255 | public static Fraction CalculateHypercubeVolumeBig(double[] bounds, int dim) {
|
---|
256 | double diff = bounds[1] - bounds[0];
|
---|
257 |
|
---|
258 | Fraction volume = diff;
|
---|
259 | for (int i = 1; i < dim; i++) {
|
---|
260 | volume *= diff;
|
---|
261 | }
|
---|
262 | return volume;
|
---|
263 | }
|
---|
264 | }
|
---|
265 | }
|
---|