[12909] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | * and the BEACON Center for the Study of Evolution in Action.
|
---|
| 5 | *
|
---|
| 6 | * This file is part of HeuristicLab.
|
---|
| 7 | *
|
---|
| 8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 9 | * it under the terms of the GNU General Public License as published by
|
---|
| 10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 11 | * (at your option) any later version.
|
---|
| 12 | *
|
---|
| 13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 16 | * GNU General Public License for more details.
|
---|
| 17 | *
|
---|
| 18 | * You should have received a copy of the GNU General Public License
|
---|
| 19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 20 | */
|
---|
| 21 | #endregion
|
---|
| 22 |
|
---|
| 23 | using System;
|
---|
| 24 | using System.Collections.Generic;
|
---|
| 25 | using System.Threading;
|
---|
| 26 | using HeuristicLab.Analysis;
|
---|
| 27 | using HeuristicLab.Common;
|
---|
| 28 | using HeuristicLab.Core;
|
---|
| 29 | using HeuristicLab.Data;
|
---|
| 30 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 31 | using HeuristicLab.Optimization;
|
---|
| 32 | using HeuristicLab.Parameters;
|
---|
| 33 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 34 | using HeuristicLab.PluginInfrastructure;
|
---|
| 35 | using HeuristicLab.Random;
|
---|
| 36 |
|
---|
| 37 | namespace HeuristicLab.Algorithms.IteratedSymbolicExpressionConstruction {
|
---|
| 38 | [Item("Iterated Symbolic Expression Construction", "Generates symbolic expression trees iteratively.")]
|
---|
| 39 | [StorableClass]
|
---|
| 40 | [Creatable(CreatableAttribute.Categories.SingleSolutionAlgorithms, Priority = 400)]
|
---|
| 41 | public class IteratedSymbolicExpressionConstruction : BasicAlgorithm {
|
---|
| 42 | public override Type ProblemType {
|
---|
| 43 | get { return typeof(SymbolicExpressionTreeProblem); }
|
---|
| 44 | }
|
---|
| 45 | public new SymbolicExpressionTreeProblem Problem {
|
---|
| 46 | get { return (SymbolicExpressionTreeProblem)base.Problem; }
|
---|
| 47 | set { base.Problem = value; }
|
---|
| 48 | }
|
---|
| 49 |
|
---|
| 50 | #region ParameterNames
|
---|
| 51 | private const string MaximumEvaluationsParameterName = "Maximum Evaluations";
|
---|
| 52 | private const string SeedParameterName = "Seed";
|
---|
| 53 | private const string SetSeedRandomlyParameterName = "SetSeedRandomly";
|
---|
| 54 | private const string ResultUpdateIntervalParameterName = "ResultUpdateInterval";
|
---|
| 55 | private const string PolicyParameterName = "Policy";
|
---|
| 56 | #endregion
|
---|
| 57 |
|
---|
| 58 | #region ParameterProperties
|
---|
| 59 | public IFixedValueParameter<IntValue> MaximumEvaluationsParameter {
|
---|
| 60 | get { return (IFixedValueParameter<IntValue>)Parameters[MaximumEvaluationsParameterName]; }
|
---|
| 61 | }
|
---|
| 62 | public IFixedValueParameter<IntValue> SeedParameter {
|
---|
| 63 | get { return (IFixedValueParameter<IntValue>)Parameters[SeedParameterName]; }
|
---|
| 64 | }
|
---|
| 65 | public IFixedValueParameter<BoolValue> SetSeedRandomlyParameter {
|
---|
| 66 | get { return (IFixedValueParameter<BoolValue>)Parameters[SetSeedRandomlyParameterName]; }
|
---|
| 67 | }
|
---|
| 68 | public IFixedValueParameter<IntValue> ResultUpdateIntervalParameter {
|
---|
| 69 | get { return (IFixedValueParameter<IntValue>)Parameters[ResultUpdateIntervalParameterName]; }
|
---|
| 70 | }
|
---|
| 71 | public IValueParameter<ISymbolicExpressionConstructionPolicy> PolicyParameter {
|
---|
| 72 | get {
|
---|
| 73 | return (IValueParameter<ISymbolicExpressionConstructionPolicy>)Parameters[PolicyParameterName];
|
---|
| 74 | }
|
---|
| 75 | }
|
---|
| 76 | #endregion
|
---|
| 77 |
|
---|
| 78 | #region Properties
|
---|
| 79 | public int MaximumEvaluations {
|
---|
| 80 | get { return MaximumEvaluationsParameter.Value.Value; }
|
---|
| 81 | set { MaximumEvaluationsParameter.Value.Value = value; }
|
---|
| 82 | }
|
---|
| 83 | public int Seed {
|
---|
| 84 | get { return SeedParameter.Value.Value; }
|
---|
| 85 | set { SeedParameter.Value.Value = value; }
|
---|
| 86 | }
|
---|
| 87 | public bool SetSeedRandomly {
|
---|
| 88 | get { return SetSeedRandomlyParameter.Value.Value; }
|
---|
| 89 | set { SetSeedRandomlyParameter.Value.Value = value; }
|
---|
| 90 | }
|
---|
| 91 | public int ResultUpdateInterval {
|
---|
| 92 | get { return ResultUpdateIntervalParameter.Value.Value; }
|
---|
| 93 | set { ResultUpdateIntervalParameter.Value.Value = value; }
|
---|
| 94 | }
|
---|
| 95 | #endregion
|
---|
| 96 |
|
---|
| 97 | #region ResultsProperties
|
---|
| 98 | public double ResultsBestQuality {
|
---|
| 99 | get { return ((DoubleValue)Results["Best Quality"].Value).Value; }
|
---|
| 100 | }
|
---|
| 101 | public int ResultsBestFoundOnEvaluation {
|
---|
| 102 | get { return ((IntValue)Results["Evaluation Best Solution Was Found"].Value).Value; }
|
---|
| 103 | }
|
---|
| 104 | public int ResultsEvaluations {
|
---|
| 105 | get { return ((IntValue)Results["Evaluations"].Value).Value; }
|
---|
| 106 | }
|
---|
| 107 | public DataTable ResultsQualities {
|
---|
| 108 | get { return ((DataTable)Results["Qualities"].Value); }
|
---|
| 109 | }
|
---|
| 110 | public DataRow ResultsQualitiesBest {
|
---|
| 111 | get { return ResultsQualities.Rows["Best Quality"]; }
|
---|
| 112 | }
|
---|
| 113 | public DataRow ResultQualitiesAverage {
|
---|
| 114 | get { return ResultsQualities.Rows["Average Quality"]; }
|
---|
| 115 | }
|
---|
| 116 | #endregion
|
---|
| 117 |
|
---|
| 118 | private readonly IRandom random = new MersenneTwister();
|
---|
| 119 |
|
---|
| 120 |
|
---|
| 121 | [StorableConstructor]
|
---|
| 122 | protected IteratedSymbolicExpressionConstruction(bool deserializing) : base(deserializing) { }
|
---|
| 123 |
|
---|
| 124 | protected IteratedSymbolicExpressionConstruction(IteratedSymbolicExpressionConstruction original, Cloner cloner)
|
---|
| 125 | : base(original, cloner) {
|
---|
| 126 | }
|
---|
| 127 |
|
---|
| 128 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 129 | return new IteratedSymbolicExpressionConstruction(this, cloner);
|
---|
| 130 | }
|
---|
| 131 |
|
---|
| 132 | public IteratedSymbolicExpressionConstruction() {
|
---|
| 133 | Parameters.Add(new FixedValueParameter<IntValue>(MaximumEvaluationsParameterName, "", new IntValue(500000)));
|
---|
| 134 | Parameters.Add(new FixedValueParameter<IntValue>(ResultUpdateIntervalParameterName, "The update interval for the result values in number of evaluations", new IntValue(100)));
|
---|
| 135 | Parameters.Add(new FixedValueParameter<IntValue>(SeedParameterName, "The random seed used to initialize the new pseudo random number generator.", new IntValue(0)));
|
---|
| 136 | Parameters.Add(new FixedValueParameter<BoolValue>(SetSeedRandomlyParameterName, "True if the random seed should be set to a random value, otherwise false.", new BoolValue
|
---|
| 137 | (true)));
|
---|
| 138 | Parameters.Add(new ValueParameter<ISymbolicExpressionConstructionPolicy>(PolicyParameterName, "The policy to use for exploring the search tree", new UcbSymbolicExpressionConstructionPolicy()));
|
---|
| 139 | }
|
---|
| 140 |
|
---|
| 141 | protected override void Run(CancellationToken cancellationToken) {
|
---|
| 142 | // TODO minimization problems
|
---|
| 143 | if (!Problem.Maximization) throw new NotSupportedException("Minimization problems are not supported");
|
---|
| 144 |
|
---|
| 145 | // Set up the algorithm
|
---|
| 146 | if (SetSeedRandomly) Seed = new System.Random().Next();
|
---|
| 147 | random.Reset(Seed);
|
---|
| 148 |
|
---|
| 149 | var policy = PolicyParameter.Value;
|
---|
| 150 | policy.Initialize(Problem, random);
|
---|
| 151 |
|
---|
| 152 | IntValue evaluations = new IntValue(0);
|
---|
| 153 | DoubleValue bestQuality = new DoubleValue(Double.NegativeInfinity);
|
---|
| 154 | IntValue bestFoundOnEvaluation = new IntValue(0);
|
---|
| 155 |
|
---|
| 156 | // Set up the results display
|
---|
| 157 | Results.Add(new Result("Evaluations", evaluations));
|
---|
| 158 | Results.Add(new Result("Best Quality", bestQuality));
|
---|
| 159 | Results.Add(new Result("Evaluation Best Solution Was Found", bestFoundOnEvaluation));
|
---|
| 160 |
|
---|
| 161 | var table = new DataTable("Qualities");
|
---|
| 162 | var bestQualityRow = new DataRow("Best Quality");
|
---|
| 163 | table.Rows.Add(bestQualityRow);
|
---|
| 164 |
|
---|
| 165 | var currentQualityRow = new DataRow("Average Quality");
|
---|
| 166 | currentQualityRow.VisualProperties.LineStyle = DataRowVisualProperties.DataRowLineStyle.Dot;
|
---|
| 167 | table.Rows.Add(currentQualityRow);
|
---|
| 168 |
|
---|
| 169 | Results.Add(new Result("Qualities", table));
|
---|
| 170 |
|
---|
| 171 | // for problem-specific analyzer
|
---|
| 172 | ISymbolicExpressionTree[] solutions = new ISymbolicExpressionTree[1];
|
---|
| 173 | double[] qualities = new double[1];
|
---|
| 174 |
|
---|
| 175 | // the algorithm
|
---|
| 176 | // Loop until iteration limit reached or canceled.
|
---|
| 177 | int evals = 0;
|
---|
| 178 | double sumQuality = 0; // for average quality calculation
|
---|
| 179 | int resultUpdateInterval = ResultUpdateInterval;
|
---|
[12923] | 180 | try {
|
---|
| 181 | while (evals < MaximumEvaluations) {
|
---|
| 182 | double quality = double.NaN;
|
---|
| 183 | ISymbolicExpressionTree tree = null;
|
---|
| 184 | IEnumerable<object> stateSequence;
|
---|
| 185 | tree = policy.Sample(out stateSequence);
|
---|
| 186 | quality = Problem.Evaluate(tree, random);
|
---|
| 187 | evals++;
|
---|
| 188 | sumQuality += quality;
|
---|
[12909] | 189 |
|
---|
[12923] | 190 | policy.Update(stateSequence, quality);
|
---|
| 191 | cancellationToken.ThrowIfCancellationRequested();
|
---|
[12909] | 192 |
|
---|
[12923] | 193 | // update statistics results in regular update intervals
|
---|
| 194 | if ((evals - 1) % resultUpdateInterval == resultUpdateInterval - 1) {
|
---|
| 195 | evaluations.Value = evals;
|
---|
| 196 | bestQualityRow.Values.Add(bestQuality.Value);
|
---|
| 197 | currentQualityRow.Values.Add(sumQuality / (double)resultUpdateInterval);
|
---|
| 198 | sumQuality = 0;
|
---|
| 199 | }
|
---|
[12909] | 200 |
|
---|
[12923] | 201 | // update best solution results whenever a new better solution is found
|
---|
| 202 | if (Problem.IsBetter(quality, bestQuality.Value)) {
|
---|
| 203 | bestQuality.Value = quality;
|
---|
| 204 | bestFoundOnEvaluation.Value = evals;
|
---|
[12909] | 205 |
|
---|
[12923] | 206 | // for problem-specific analyzer
|
---|
| 207 | solutions[0] = tree;
|
---|
| 208 | qualities[0] = quality;
|
---|
| 209 | }
|
---|
| 210 |
|
---|
| 211 | // run problem-specific analyzer in each iteration
|
---|
| 212 | Problem.Analyze(solutions, qualities, Results, random);
|
---|
[12909] | 213 | }
|
---|
[12923] | 214 | } finally {
|
---|
| 215 | // update stats whenever the alg is stopped
|
---|
| 216 | evaluations.Value = evals;
|
---|
| 217 | bestQualityRow.Values.Add(bestQuality.Value);
|
---|
| 218 | currentQualityRow.Values.Add(sumQuality / (double)resultUpdateInterval);
|
---|
[12909] | 219 | }
|
---|
| 220 | }
|
---|
| 221 |
|
---|
| 222 | }
|
---|
| 223 | }
|
---|