Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Algorithms.DataAnalysis.Glmnet/3.4/ElasticNetLinearRegression.cs @ 14906

Last change on this file since 14906 was 14844, checked in by gkronber, 8 years ago

#745 ordered rows for coefficients in data-table by total absolute value

File size: 17.8 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Linq;
24using System.Threading;
25using HeuristicLab.Analysis;
26using HeuristicLab.Common;
27using HeuristicLab.Core;
28using HeuristicLab.Data;
29using HeuristicLab.Optimization;
30using HeuristicLab.Parameters;
31using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
32using HeuristicLab.Problems.DataAnalysis;
33using HeuristicLab.Problems.DataAnalysis.Symbolic;
34using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
35
36namespace HeuristicLab.Algorithms.DataAnalysis.Glmnet {
37  [Item("Elastic-net Linear Regression (LR)", "Linear regression with elastic-net regularization (wrapper for glmnet)")]
38  [Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 110)]
39  [StorableClass]
40  public sealed class ElasticNetLinearRegression : FixedDataAnalysisAlgorithm<IRegressionProblem> {
41    private const string PenalityParameterName = "Penality";
42    private const string LambdaParameterName = "Lambda";
43    #region parameters
44    public IFixedValueParameter<DoubleValue> PenalityParameter {
45      get { return (IFixedValueParameter<DoubleValue>)Parameters[PenalityParameterName]; }
46    }
47    public IValueParameter<DoubleValue> LambdaParameter {
48      get { return (IValueParameter<DoubleValue>)Parameters[LambdaParameterName]; }
49    }
50    #endregion
51    #region properties
52    public double Penality {
53      get { return PenalityParameter.Value.Value; }
54      set { PenalityParameter.Value.Value = value; }
55    }
56    public DoubleValue Lambda {
57      get { return LambdaParameter.Value; }
58      set { LambdaParameter.Value = value; }
59    }
60    #endregion
61
62    [StorableConstructor]
63    private ElasticNetLinearRegression(bool deserializing) : base(deserializing) { }
64    private ElasticNetLinearRegression(ElasticNetLinearRegression original, Cloner cloner)
65      : base(original, cloner) {
66    }
67    public ElasticNetLinearRegression()
68      : base() {
69      Problem = new RegressionProblem();
70      Parameters.Add(new FixedValueParameter<DoubleValue>(PenalityParameterName, "Penalty factor (alpha) for balancing between ridge (0.0) and lasso (1.0) regression", new DoubleValue(0.5)));
71      Parameters.Add(new OptionalValueParameter<DoubleValue>(LambdaParameterName, "Optional: the value of lambda for which to calculate an elastic-net solution. lambda == null => calculate the whole path of all lambdas"));
72    }
73
74    [StorableHook(HookType.AfterDeserialization)]
75    private void AfterDeserialization() { }
76
77    public override IDeepCloneable Clone(Cloner cloner) {
78      return new ElasticNetLinearRegression(this, cloner);
79    }
80
81    protected override void Run(CancellationToken cancellationToken) {
82      if (Lambda == null) {
83        CreateSolutionPath();
84      } else {
85        CreateSolution(Lambda.Value);
86      }
87    }
88
89    private void CreateSolution(double lambda) {
90      double trainNMSE;
91      double testNMSE;
92      var coeff = CreateElasticNetLinearRegressionSolution(Problem.ProblemData, Penality, lambda, out trainNMSE, out testNMSE);
93      Results.Add(new Result("NMSE (train)", new DoubleValue(trainNMSE)));
94      Results.Add(new Result("NMSE (test)", new DoubleValue(testNMSE)));
95
96      var allVariables = Problem.ProblemData.AllowedInputVariables.ToArray();
97
98      var remainingVars = Enumerable.Range(0, allVariables.Length)
99        .Where(idx => !coeff[idx].IsAlmost(0.0)).Select(idx => allVariables[idx])
100        .ToArray();
101      var remainingCoeff = Enumerable.Range(0, allVariables.Length)
102        .Select(idx => coeff[idx])
103        .Where(c => !c.IsAlmost(0.0))
104        .ToArray();
105
106      var tree = LinearModelToTreeConverter.CreateTree(remainingVars, remainingCoeff, coeff.Last());
107
108
109      SymbolicRegressionSolution solution = new SymbolicRegressionSolution(
110        new SymbolicRegressionModel(Problem.ProblemData.TargetVariable, tree, new SymbolicDataAnalysisExpressionTreeInterpreter()),
111        (IRegressionProblemData)Problem.ProblemData.Clone());
112      solution.Model.Name = "Elastic-net Linear Regression Model";
113      solution.Name = "Elastic-net Linear Regression Solution";
114
115      Results.Add(new Result(solution.Name, solution.Description, solution));
116    }
117
118    private void CreateSolutionPath() {
119      double[] lambda;
120      double[] trainNMSE;
121      double[] testNMSE;
122      double[,] coeff;
123      double[] intercept;
124      RunElasticNetLinearRegression(Problem.ProblemData, Penality, out lambda, out trainNMSE, out testNMSE, out coeff, out intercept);
125
126      var coeffTable = new IndexedDataTable<double>("Coefficients", "The paths of standarized coefficient values over different lambda values");
127      coeffTable.VisualProperties.YAxisMaximumAuto = false;
128      coeffTable.VisualProperties.YAxisMinimumAuto = false;
129      coeffTable.VisualProperties.XAxisMaximumAuto = false;
130      coeffTable.VisualProperties.XAxisMinimumAuto = false;
131
132      coeffTable.VisualProperties.XAxisLogScale = true;
133      coeffTable.VisualProperties.XAxisTitle = "Lambda";
134      coeffTable.VisualProperties.YAxisTitle = "Coefficients";
135      coeffTable.VisualProperties.SecondYAxisTitle = "Number of variables";
136
137      var nLambdas = lambda.Length;
138      var nCoeff = coeff.GetLength(1);
139      var dataRows = new IndexedDataRow<double>[nCoeff];
140      var allowedVars = Problem.ProblemData.AllowedInputVariables.ToArray();
141      var numNonZeroCoeffs = new int[nLambdas];
142      for (int i = 0; i < nCoeff; i++) {
143        var coeffId = allowedVars[i];
144        double sigma = Problem.ProblemData.Dataset.GetDoubleValues(coeffId).StandardDeviation();
145        var path = Enumerable.Range(0, nLambdas).Select(r => Tuple.Create(lambda[r], coeff[r, i] * sigma)).ToArray();
146        dataRows[i] = new IndexedDataRow<double>(coeffId, coeffId, path);
147      }
148      // add to coeffTable by total weight (larger area under the curve => more important);
149      foreach (var r in dataRows.OrderByDescending(r => r.Values.Select(t => t.Item2).Sum(x => Math.Abs(x)))) {
150        coeffTable.Rows.Add(r);
151      }
152
153      for (int i = 0; i < coeff.GetLength(0); i++) {
154        for (int j = 0; j < coeff.GetLength(1); j++) {
155          if (!coeff[i, j].IsAlmost(0.0)) {
156            numNonZeroCoeffs[i]++;
157          }
158        }
159      }
160      if (lambda.Length > 2) {
161        coeffTable.VisualProperties.XAxisMinimumFixedValue = Math.Pow(10, Math.Floor(Math.Log10(lambda.Last())));
162        coeffTable.VisualProperties.XAxisMaximumFixedValue = Math.Pow(10, Math.Ceiling(Math.Log10(lambda.Skip(1).First())));
163      }
164      coeffTable.Rows.Add(new IndexedDataRow<double>("Number of variables", "The number of non-zero coefficients for each step in the path", lambda.Zip(numNonZeroCoeffs, (l, v) => Tuple.Create(l, (double)v))));
165      coeffTable.Rows["Number of variables"].VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Points;
166      coeffTable.Rows["Number of variables"].VisualProperties.SecondYAxis = true;
167
168      Results.Add(new Result(coeffTable.Name, coeffTable.Description, coeffTable));
169
170      var errorTable = new IndexedDataTable<double>("NMSE", "Path of NMSE values over different lambda values");
171      errorTable.VisualProperties.YAxisMaximumAuto = false;
172      errorTable.VisualProperties.YAxisMinimumAuto = false;
173      errorTable.VisualProperties.XAxisMaximumAuto = false;
174      errorTable.VisualProperties.XAxisMinimumAuto = false;
175
176      errorTable.VisualProperties.YAxisMinimumFixedValue = 0;
177      errorTable.VisualProperties.YAxisMaximumFixedValue = 1.0;
178      errorTable.VisualProperties.XAxisLogScale = true;
179      errorTable.VisualProperties.XAxisTitle = "Lambda";
180      errorTable.VisualProperties.YAxisTitle = "Normalized mean of squared errors (NMSE)";
181      errorTable.VisualProperties.SecondYAxisTitle = "Number of variables";
182      errorTable.Rows.Add(new IndexedDataRow<double>("NMSE (train)", "Path of NMSE values over different lambda values", lambda.Zip(trainNMSE, (l, v) => Tuple.Create(l, v))));
183      errorTable.Rows.Add(new IndexedDataRow<double>("NMSE (test)", "Path of NMSE values over different lambda values", lambda.Zip(testNMSE, (l, v) => Tuple.Create(l, v))));
184      errorTable.Rows.Add(new IndexedDataRow<double>("Number of variables", "The number of non-zero coefficients for each step in the path", lambda.Zip(numNonZeroCoeffs, (l, v) => Tuple.Create(l, (double)v))));
185      if (lambda.Length > 2) {
186        errorTable.VisualProperties.XAxisMinimumFixedValue = Math.Pow(10, Math.Floor(Math.Log10(lambda.Last())));
187        errorTable.VisualProperties.XAxisMaximumFixedValue = Math.Pow(10, Math.Ceiling(Math.Log10(lambda.Skip(1).First())));
188      }
189      errorTable.Rows["NMSE (train)"].VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Points;
190      errorTable.Rows["NMSE (test)"].VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Points;
191      errorTable.Rows["Number of variables"].VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Points;
192      errorTable.Rows["Number of variables"].VisualProperties.SecondYAxis = true;
193
194      Results.Add(new Result(errorTable.Name, errorTable.Description, errorTable));
195    }
196
197    public static double[] CreateElasticNetLinearRegressionSolution(IRegressionProblemData problemData, double penalty, double lambda,
198            out double trainNMSE, out double testNMSE,
199            double coeffLowerBound = double.NegativeInfinity, double coeffUpperBound = double.PositiveInfinity) {
200      double[] trainNMSEs;
201      double[] testNMSEs;
202      // run for exactly one lambda
203      var coeffs = CreateElasticNetLinearRegressionSolution(problemData, penalty, new double[] { lambda }, out trainNMSEs, out testNMSEs, coeffLowerBound, coeffUpperBound);
204      trainNMSE = trainNMSEs[0];
205      testNMSE = testNMSEs[0];
206      return coeffs[0];
207    }
208    public static double[][] CreateElasticNetLinearRegressionSolution(IRegressionProblemData problemData, double penalty, double[] lambda,
209            out double[] trainNMSEs, out double[] testNMSEs,
210            double coeffLowerBound = double.NegativeInfinity, double coeffUpperBound = double.PositiveInfinity,
211            int maxVars = -1) {
212      // run for multiple user-supplied lambdas
213      double[,] coeff;
214      double[] intercept;
215      RunElasticNetLinearRegression(problemData, penalty, lambda.Length, 1.0, lambda, out lambda, out trainNMSEs, out testNMSEs, out coeff, out intercept, coeffLowerBound, coeffUpperBound, maxVars);
216
217      int nRows = intercept.Length;
218      int nCols = coeff.GetLength(1) + 1;
219      double[][] sols = new double[nRows][];
220      for (int solIdx = 0; solIdx < nRows; solIdx++) {
221        sols[solIdx] = new double[nCols];
222        for (int cIdx = 0; cIdx < nCols - 1; cIdx++) {
223          sols[solIdx][cIdx] = coeff[solIdx, cIdx];
224        }
225        sols[solIdx][nCols - 1] = intercept[solIdx];
226      }
227      return sols;
228    }
229
230    public static void RunElasticNetLinearRegression(IRegressionProblemData problemData, double penalty,
231      out double[] lambda, out double[] trainNMSE, out double[] testNMSE, out double[,] coeff, out double[] intercept,
232      double coeffLowerBound = double.NegativeInfinity, double coeffUpperBound = double.PositiveInfinity,
233      int maxVars = -1
234      ) {
235      double[] userLambda = new double[0];
236      // automatically determine lambda values (maximum 100 different lambda values)
237      RunElasticNetLinearRegression(problemData, penalty, 100, 0.0, userLambda, out lambda, out trainNMSE, out testNMSE, out coeff, out intercept, coeffLowerBound, coeffUpperBound, maxVars);
238    }
239
240    /// <summary>
241    /// Elastic net with squared-error-loss for dense predictor matrix, runs the full path of all lambdas
242    /// </summary>
243    /// <param name="problemData">Predictor target matrix x and target vector y</param>
244    /// <param name="penalty">Penalty for balance between ridge (0.0) and lasso (1.0) regression</param>
245    /// <param name="nlam">Maximum number of lambda values (default 100)</param>
246    /// <param name="flmin">User control of lambda values (&lt;1.0 => minimum lambda = flmin * (largest lambda value), >= 1.0 => use supplied lambda values</param>
247    /// <param name="ulam">User supplied lambda values</param>
248    /// <param name="lambda">Output lambda values</param>
249    /// <param name="trainNMSE">Vector of normalized mean of squared error (NMSE = Variance(res) / Variance(y)) values on the training set for each set of coefficients along the path</param>
250    /// <param name="testNMSE">Vector of normalized mean of squared error (NMSE = Variance(res) / Variance(y)) values on the test set for each set of coefficients along the path</param>
251    /// <param name="coeff">Vector of coefficient vectors for each solution along the path</param>
252    /// <param name="intercept">Vector of intercepts for each solution along the path</param>
253    /// <param name="coeffLowerBound">Optional lower bound for all coefficients</param>
254    /// <param name="coeffUpperBound">Optional upper bound for all coefficients</param>
255    /// <param name="maxVars">Maximum allowed number of variables in each solution along the path (-1 => all variables are allowed)</param>
256    private static void RunElasticNetLinearRegression(IRegressionProblemData problemData, double penalty,
257  int nlam, double flmin, double[] ulam, out double[] lambda, out double[] trainNMSE, out double[] testNMSE, out double[,] coeff, out double[] intercept,
258  double coeffLowerBound = double.NegativeInfinity, double coeffUpperBound = double.PositiveInfinity,
259  int maxVars = -1
260  ) {
261      if (penalty < 0.0 || penalty > 1.0) throw new ArgumentException("0 <= penalty <= 1", "penalty");
262
263      double[,] trainX;
264      double[,] testX;
265      double[] trainY;
266      double[] testY;
267
268      PrepareData(problemData, out trainX, out trainY, out testX, out testY);
269      var numTrainObs = trainX.GetLength(1);
270      var numTestObs = testX.GetLength(1);
271      var numVars = trainX.GetLength(0);
272
273      int ka = 1; // => covariance updating algorithm
274      double parm = penalty;
275      double[] w = Enumerable.Repeat(1.0, numTrainObs).ToArray(); // all observations have the same weight
276      int[] jd = new int[1]; // do not force to use any of the variables
277      double[] vp = Enumerable.Repeat(1.0, numVars).ToArray(); // all predictor variables are unpenalized
278      double[,] cl = new double[numVars, 2]; // use the same bounds for all coefficients
279      for (int i = 0; i < numVars; i++) {
280        cl[i, 0] = coeffLowerBound;
281        cl[i, 1] = coeffUpperBound;
282      }
283
284      int ne = maxVars > 0 ? maxVars : numVars;
285      int nx = numVars;
286      double thr = 1.0e-5; // default value as recommended in glmnet
287      int isd = 1; //  => regression on standardized predictor variables
288      int intr = 1;  // => do include intercept in model
289      int maxit = 100000; // default value as recommended in glmnet
290      // outputs
291      int lmu = -1;
292      double[,] ca;
293      int[] ia;
294      int[] nin;
295      int nlp = -99;
296      int jerr = -99;
297      double[] trainR2;
298      Glmnet.elnet(ka, parm, numTrainObs, numVars, trainX, trainY, w, jd, vp, cl, ne, nx, nlam, flmin, ulam, thr, isd, intr, maxit, out lmu, out intercept, out ca, out ia, out nin, out trainR2, out lambda, out nlp, out jerr);
299
300      trainNMSE = new double[lmu]; // elnet returns R**2 as 1 - NMSE
301      testNMSE = new double[lmu];
302      coeff = new double[lmu, numVars];
303      for (int solIdx = 0; solIdx < lmu; solIdx++) {
304        trainNMSE[solIdx] = 1.0 - trainR2[solIdx];
305
306        // uncompress coefficients of solution
307        int selectedNin = nin[solIdx];
308        double[] coefficients;
309        double[] selectedCa = new double[nx];
310        for (int i = 0; i < nx; i++) {
311          selectedCa[i] = ca[solIdx, i];
312        }
313
314        // apply to test set to calculate test NMSE values for each lambda step
315        double[] fn;
316        Glmnet.modval(intercept[solIdx], selectedCa, ia, selectedNin, numTestObs, testX, out fn);
317        OnlineCalculatorError error;
318        var nmse = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(testY, fn, out error);
319        if (error != OnlineCalculatorError.None) nmse = double.NaN;
320        testNMSE[solIdx] = nmse;
321
322        // uncompress coefficients
323        Glmnet.uncomp(numVars, selectedCa, ia, selectedNin, out coefficients);
324        for (int i = 0; i < coefficients.Length; i++) {
325          coeff[solIdx, i] = coefficients[i];
326        }
327      }
328    }
329
330    private static void PrepareData(IRegressionProblemData problemData, out double[,] trainX, out double[] trainY,
331      out double[,] testX, out double[] testY) {
332
333      var ds = problemData.Dataset;
334      trainX = ds.ToArray(problemData.AllowedInputVariables, problemData.TrainingIndices);
335      trainX = trainX.Transpose();
336      trainY = problemData.Dataset.GetDoubleValues(problemData.TargetVariable,
337        problemData.TrainingIndices)
338        .ToArray();
339      testX = ds.ToArray(problemData.AllowedInputVariables, problemData.TestIndices);
340      testX = testX.Transpose();
341      testY = problemData.Dataset.GetDoubleValues(problemData.TargetVariable,
342        problemData.TestIndices)
343        .ToArray();
344    }
345  }
346}
Note: See TracBrowser for help on using the repository browser.