Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Algorithms.DataAnalysis.Glmnet/3.4/ElasticNetLinearRegression.cs @ 14808

Last change on this file since 14808 was 14674, checked in by mkommend, 8 years ago

#745: Adapted elastic net linear regression to support basic algorithms.

File size: 17.6 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Linq;
24using System.Threading;
25using HeuristicLab.Analysis;
26using HeuristicLab.Common;
27using HeuristicLab.Core;
28using HeuristicLab.Data;
29using HeuristicLab.Optimization;
30using HeuristicLab.Parameters;
31using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
32using HeuristicLab.Problems.DataAnalysis;
33using HeuristicLab.Problems.DataAnalysis.Symbolic;
34using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
35
36namespace HeuristicLab.Algorithms.DataAnalysis.Glmnet {
37  [Item("Elastic-net Linear Regression (LR)", "Linear regression with elastic-net regularization (wrapper for glmnet)")]
38  [Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 110)]
39  [StorableClass]
40  public sealed class ElasticNetLinearRegression : FixedDataAnalysisAlgorithm<IRegressionProblem> {
41    private const string PenalityParameterName = "Penality";
42    private const string LambdaParameterName = "Lambda";
43    #region parameters
44    public IFixedValueParameter<DoubleValue> PenalityParameter {
45      get { return (IFixedValueParameter<DoubleValue>)Parameters[PenalityParameterName]; }
46    }
47    public IValueParameter<DoubleValue> LambdaParameter {
48      get { return (IValueParameter<DoubleValue>)Parameters[LambdaParameterName]; }
49    }
50    #endregion
51    #region properties
52    public double Penality {
53      get { return PenalityParameter.Value.Value; }
54      set { PenalityParameter.Value.Value = value; }
55    }
56    public DoubleValue Lambda {
57      get { return LambdaParameter.Value; }
58      set { LambdaParameter.Value = value; }
59    }
60    #endregion
61
62    [StorableConstructor]
63    private ElasticNetLinearRegression(bool deserializing) : base(deserializing) { }
64    private ElasticNetLinearRegression(ElasticNetLinearRegression original, Cloner cloner)
65      : base(original, cloner) {
66    }
67    public ElasticNetLinearRegression()
68      : base() {
69      Problem = new RegressionProblem();
70      Parameters.Add(new FixedValueParameter<DoubleValue>(PenalityParameterName, "Penalty factor (alpha) for balancing between ridge (0.0) and lasso (1.0) regression", new DoubleValue(0.5)));
71      Parameters.Add(new OptionalValueParameter<DoubleValue>(LambdaParameterName, "Optional: the value of lambda for which to calculate an elastic-net solution. lambda == null => calculate the whole path of all lambdas"));
72    }
73
74    [StorableHook(HookType.AfterDeserialization)]
75    private void AfterDeserialization() { }
76
77    public override IDeepCloneable Clone(Cloner cloner) {
78      return new ElasticNetLinearRegression(this, cloner);
79    }
80
81    protected override void Run(CancellationToken cancellationToken) {
82      if (Lambda == null) {
83        CreateSolutionPath();
84      } else {
85        CreateSolution(Lambda.Value);
86      }
87    }
88
89    private void CreateSolution(double lambda) {
90      double trainNMSE;
91      double testNMSE;
92      var coeff = CreateElasticNetLinearRegressionSolution(Problem.ProblemData, Penality, lambda, out trainNMSE, out testNMSE);
93      Results.Add(new Result("NMSE (train)", new DoubleValue(trainNMSE)));
94      Results.Add(new Result("NMSE (test)", new DoubleValue(testNMSE)));
95
96      var allVariables = Problem.ProblemData.AllowedInputVariables.ToArray();
97
98      var remainingVars = Enumerable.Range(0, allVariables.Length)
99        .Where(idx => !coeff[idx].IsAlmost(0.0)).Select(idx => allVariables[idx])
100        .ToArray();
101      var remainingCoeff = Enumerable.Range(0, allVariables.Length)
102        .Select(idx => coeff[idx])
103        .Where(c => !c.IsAlmost(0.0))
104        .ToArray();
105
106      var tree = LinearModelToTreeConverter.CreateTree(remainingVars, remainingCoeff, coeff.Last());
107
108
109      SymbolicRegressionSolution solution = new SymbolicRegressionSolution(
110        new SymbolicRegressionModel(Problem.ProblemData.TargetVariable, tree, new SymbolicDataAnalysisExpressionTreeInterpreter()),
111        (IRegressionProblemData)Problem.ProblemData.Clone());
112      solution.Model.Name = "Elastic-net Linear Regression Model";
113      solution.Name = "Elastic-net Linear Regression Solution";
114
115      Results.Add(new Result(solution.Name, solution.Description, solution));
116    }
117
118    private void CreateSolutionPath() {
119      double[] lambda;
120      double[] trainNMSE;
121      double[] testNMSE;
122      double[,] coeff;
123      double[] intercept;
124      RunElasticNetLinearRegression(Problem.ProblemData, Penality, out lambda, out trainNMSE, out testNMSE, out coeff, out intercept);
125
126      var coeffTable = new IndexedDataTable<double>("Coefficients", "The paths of standarized coefficient values over different lambda values");
127      coeffTable.VisualProperties.YAxisMaximumAuto = false;
128      coeffTable.VisualProperties.YAxisMinimumAuto = false;
129      coeffTable.VisualProperties.XAxisMaximumAuto = false;
130      coeffTable.VisualProperties.XAxisMinimumAuto = false;
131
132      coeffTable.VisualProperties.XAxisLogScale = true;
133      coeffTable.VisualProperties.XAxisTitle = "Lambda";
134      coeffTable.VisualProperties.YAxisTitle = "Coefficients";
135      coeffTable.VisualProperties.SecondYAxisTitle = "Number of variables";
136
137      var nLambdas = lambda.Length;
138      var nCoeff = coeff.GetLength(1);
139      var dataRows = new IndexedDataRow<double>[nCoeff];
140      var allowedVars = Problem.ProblemData.AllowedInputVariables.ToArray();
141      var numNonZeroCoeffs = new int[nLambdas];
142      for (int i = 0; i < nCoeff; i++) {
143        var coeffId = allowedVars[i];
144        double sigma = Problem.ProblemData.Dataset.GetDoubleValues(coeffId).StandardDeviation();
145        var path = Enumerable.Range(0, nLambdas).Select(r => Tuple.Create(lambda[r], coeff[r, i] * sigma)).ToArray();
146        dataRows[i] = new IndexedDataRow<double>(coeffId, coeffId, path);
147        coeffTable.Rows.Add(dataRows[i]);
148      }
149      for (int i = 0; i < coeff.GetLength(0); i++) {
150        for (int j = 0; j < coeff.GetLength(1); j++) {
151          if (!coeff[i, j].IsAlmost(0.0)) {
152            numNonZeroCoeffs[i]++;
153          }
154        }
155      }
156      if (lambda.Length > 2) {
157        coeffTable.VisualProperties.XAxisMinimumFixedValue = Math.Pow(10, Math.Floor(Math.Log10(lambda.Last())));
158        coeffTable.VisualProperties.XAxisMaximumFixedValue = Math.Pow(10, Math.Ceiling(Math.Log10(lambda.Skip(1).First())));
159      }
160      coeffTable.Rows.Add(new IndexedDataRow<double>("Number of variables", "The number of non-zero coefficients for each step in the path", lambda.Zip(numNonZeroCoeffs, (l, v) => Tuple.Create(l, (double)v))));
161      coeffTable.Rows["Number of variables"].VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Points;
162      coeffTable.Rows["Number of variables"].VisualProperties.SecondYAxis = true;
163
164      Results.Add(new Result(coeffTable.Name, coeffTable.Description, coeffTable));
165
166      var errorTable = new IndexedDataTable<double>("NMSE", "Path of NMSE values over different lambda values");
167      errorTable.VisualProperties.YAxisMaximumAuto = false;
168      errorTable.VisualProperties.YAxisMinimumAuto = false;
169      errorTable.VisualProperties.XAxisMaximumAuto = false;
170      errorTable.VisualProperties.XAxisMinimumAuto = false;
171
172      errorTable.VisualProperties.YAxisMinimumFixedValue = 0;
173      errorTable.VisualProperties.YAxisMaximumFixedValue = 1.0;
174      errorTable.VisualProperties.XAxisLogScale = true;
175      errorTable.VisualProperties.XAxisTitle = "Lambda";
176      errorTable.VisualProperties.YAxisTitle = "Normalized mean of squared errors (NMSE)";
177      errorTable.VisualProperties.SecondYAxisTitle = "Number of variables";
178      errorTable.Rows.Add(new IndexedDataRow<double>("NMSE (train)", "Path of NMSE values over different lambda values", lambda.Zip(trainNMSE, (l, v) => Tuple.Create(l, v))));
179      errorTable.Rows.Add(new IndexedDataRow<double>("NMSE (test)", "Path of NMSE values over different lambda values", lambda.Zip(testNMSE, (l, v) => Tuple.Create(l, v))));
180      errorTable.Rows.Add(new IndexedDataRow<double>("Number of variables", "The number of non-zero coefficients for each step in the path", lambda.Zip(numNonZeroCoeffs, (l, v) => Tuple.Create(l, (double)v))));
181      if (lambda.Length > 2) {
182        errorTable.VisualProperties.XAxisMinimumFixedValue = Math.Pow(10, Math.Floor(Math.Log10(lambda.Last())));
183        errorTable.VisualProperties.XAxisMaximumFixedValue = Math.Pow(10, Math.Ceiling(Math.Log10(lambda.Skip(1).First())));
184      }
185      errorTable.Rows["NMSE (train)"].VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Points;
186      errorTable.Rows["NMSE (test)"].VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Points;
187      errorTable.Rows["Number of variables"].VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Points;
188      errorTable.Rows["Number of variables"].VisualProperties.SecondYAxis = true;
189
190      Results.Add(new Result(errorTable.Name, errorTable.Description, errorTable));
191    }
192
193    public static double[] CreateElasticNetLinearRegressionSolution(IRegressionProblemData problemData, double penalty, double lambda,
194            out double trainNMSE, out double testNMSE,
195            double coeffLowerBound = double.NegativeInfinity, double coeffUpperBound = double.PositiveInfinity) {
196      double[] trainNMSEs;
197      double[] testNMSEs;
198      // run for exactly one lambda
199      var coeffs = CreateElasticNetLinearRegressionSolution(problemData, penalty, new double[] { lambda }, out trainNMSEs, out testNMSEs, coeffLowerBound, coeffUpperBound);
200      trainNMSE = trainNMSEs[0];
201      testNMSE = testNMSEs[0];
202      return coeffs[0];
203    }
204    public static double[][] CreateElasticNetLinearRegressionSolution(IRegressionProblemData problemData, double penalty, double[] lambda,
205            out double[] trainNMSEs, out double[] testNMSEs,
206            double coeffLowerBound = double.NegativeInfinity, double coeffUpperBound = double.PositiveInfinity,
207            int maxVars = -1) {
208      // run for multiple user-supplied lambdas
209      double[,] coeff;
210      double[] intercept;
211      RunElasticNetLinearRegression(problemData, penalty, lambda.Length, 1.0, lambda, out lambda, out trainNMSEs, out testNMSEs, out coeff, out intercept, coeffLowerBound, coeffUpperBound, maxVars);
212
213      int nRows = intercept.Length;
214      int nCols = coeff.GetLength(1) + 1;
215      double[][] sols = new double[nRows][];
216      for (int solIdx = 0; solIdx < nRows; solIdx++) {
217        sols[solIdx] = new double[nCols];
218        for (int cIdx = 0; cIdx < nCols - 1; cIdx++) {
219          sols[solIdx][cIdx] = coeff[solIdx, cIdx];
220        }
221        sols[solIdx][nCols - 1] = intercept[solIdx];
222      }
223      return sols;
224    }
225
226    public static void RunElasticNetLinearRegression(IRegressionProblemData problemData, double penalty,
227      out double[] lambda, out double[] trainNMSE, out double[] testNMSE, out double[,] coeff, out double[] intercept,
228      double coeffLowerBound = double.NegativeInfinity, double coeffUpperBound = double.PositiveInfinity,
229      int maxVars = -1
230      ) {
231      double[] userLambda = new double[0];
232      // automatically determine lambda values (maximum 100 different lambda values)
233      RunElasticNetLinearRegression(problemData, penalty, 100, 0.0, userLambda, out lambda, out trainNMSE, out testNMSE, out coeff, out intercept, coeffLowerBound, coeffUpperBound, maxVars);
234    }
235
236    /// <summary>
237    /// Elastic net with squared-error-loss for dense predictor matrix, runs the full path of all lambdas
238    /// </summary>
239    /// <param name="problemData">Predictor target matrix x and target vector y</param>
240    /// <param name="penalty">Penalty for balance between ridge (0.0) and lasso (1.0) regression</param>
241    /// <param name="nlam">Maximum number of lambda values (default 100)</param>
242    /// <param name="flmin">User control of lambda values (&lt;1.0 => minimum lambda = flmin * (largest lambda value), >= 1.0 => use supplied lambda values</param>
243    /// <param name="ulam">User supplied lambda values</param>
244    /// <param name="lambda">Output lambda values</param>
245    /// <param name="trainNMSE">Vector of normalized mean of squared error (NMSE = Variance(res) / Variance(y)) values on the training set for each set of coefficients along the path</param>
246    /// <param name="testNMSE">Vector of normalized mean of squared error (NMSE = Variance(res) / Variance(y)) values on the test set for each set of coefficients along the path</param>
247    /// <param name="coeff">Vector of coefficient vectors for each solution along the path</param>
248    /// <param name="intercept">Vector of intercepts for each solution along the path</param>
249    /// <param name="coeffLowerBound">Optional lower bound for all coefficients</param>
250    /// <param name="coeffUpperBound">Optional upper bound for all coefficients</param>
251    /// <param name="maxVars">Maximum allowed number of variables in each solution along the path (-1 => all variables are allowed)</param>
252    private static void RunElasticNetLinearRegression(IRegressionProblemData problemData, double penalty,
253  int nlam, double flmin, double[] ulam, out double[] lambda, out double[] trainNMSE, out double[] testNMSE, out double[,] coeff, out double[] intercept,
254  double coeffLowerBound = double.NegativeInfinity, double coeffUpperBound = double.PositiveInfinity,
255  int maxVars = -1
256  ) {
257      if (penalty < 0.0 || penalty > 1.0) throw new ArgumentException("0 <= penalty <= 1", "penalty");
258
259      double[,] trainX;
260      double[,] testX;
261      double[] trainY;
262      double[] testY;
263
264      PrepareData(problemData, out trainX, out trainY, out testX, out testY);
265      var numTrainObs = trainX.GetLength(1);
266      var numTestObs = testX.GetLength(1);
267      var numVars = trainX.GetLength(0);
268
269      int ka = 1; // => covariance updating algorithm
270      double parm = penalty;
271      double[] w = Enumerable.Repeat(1.0, numTrainObs).ToArray(); // all observations have the same weight
272      int[] jd = new int[1]; // do not force to use any of the variables
273      double[] vp = Enumerable.Repeat(1.0, numVars).ToArray(); // all predictor variables are unpenalized
274      double[,] cl = new double[numVars, 2]; // use the same bounds for all coefficients
275      for (int i = 0; i < numVars; i++) {
276        cl[i, 0] = coeffLowerBound;
277        cl[i, 1] = coeffUpperBound;
278      }
279
280      int ne = maxVars > 0 ? maxVars : numVars;
281      int nx = numVars;
282      double thr = 1.0e-5; // default value as recommended in glmnet
283      int isd = 1; //  => regression on standardized predictor variables
284      int intr = 1;  // => do include intercept in model
285      int maxit = 100000; // default value as recommended in glmnet
286      // outputs
287      int lmu = -1;
288      double[,] ca;
289      int[] ia;
290      int[] nin;
291      int nlp = -99;
292      int jerr = -99;
293      double[] trainR2;
294      Glmnet.elnet(ka, parm, numTrainObs, numVars, trainX, trainY, w, jd, vp, cl, ne, nx, nlam, flmin, ulam, thr, isd, intr, maxit, out lmu, out intercept, out ca, out ia, out nin, out trainR2, out lambda, out nlp, out jerr);
295
296      trainNMSE = new double[lmu]; // elnet returns R**2 as 1 - NMSE
297      testNMSE = new double[lmu];
298      coeff = new double[lmu, numVars];
299      for (int solIdx = 0; solIdx < lmu; solIdx++) {
300        trainNMSE[solIdx] = 1.0 - trainR2[solIdx];
301
302        // uncompress coefficients of solution
303        int selectedNin = nin[solIdx];
304        double[] coefficients;
305        double[] selectedCa = new double[nx];
306        for (int i = 0; i < nx; i++) {
307          selectedCa[i] = ca[solIdx, i];
308        }
309
310        // apply to test set to calculate test NMSE values for each lambda step
311        double[] fn;
312        Glmnet.modval(intercept[solIdx], selectedCa, ia, selectedNin, numTestObs, testX, out fn);
313        OnlineCalculatorError error;
314        var nmse = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(testY, fn, out error);
315        if (error != OnlineCalculatorError.None) nmse = double.NaN;
316        testNMSE[solIdx] = nmse;
317
318        // uncompress coefficients
319        Glmnet.uncomp(numVars, selectedCa, ia, selectedNin, out coefficients);
320        for (int i = 0; i < coefficients.Length; i++) {
321          coeff[solIdx, i] = coefficients[i];
322        }
323      }
324    }
325
326    private static void PrepareData(IRegressionProblemData problemData, out double[,] trainX, out double[] trainY,
327      out double[,] testX, out double[] testY) {
328
329      var ds = problemData.Dataset;
330      trainX = ds.ToArray(problemData.AllowedInputVariables, problemData.TrainingIndices);
331      trainX = trainX.Transpose();
332      trainY = problemData.Dataset.GetDoubleValues(problemData.TargetVariable,
333        problemData.TrainingIndices)
334        .ToArray();
335      testX = ds.ToArray(problemData.AllowedInputVariables, problemData.TestIndices);
336      testX = testX.Transpose();
337      testY = problemData.Dataset.GetDoubleValues(problemData.TargetVariable,
338        problemData.TestIndices)
339        .ToArray();
340    }
341  }
342}
Note: See TracBrowser for help on using the repository browser.