Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Algorithms.DataAnalysis.Glmnet/3.4/ElasticNetLinearRegression.cs @ 14242

Last change on this file since 14242 was 14225, checked in by gkronber, 8 years ago

#745: used NMSE instead of squared Pearson's correlation coeff as results.

File size: 27.0 KB
Line 
1using System;
2using System.Linq;
3using System.Runtime.InteropServices;
4using HeuristicLab.Analysis;
5using HeuristicLab.Common;
6using HeuristicLab.Core;
7using HeuristicLab.Data;
8using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
9using HeuristicLab.Optimization;
10using HeuristicLab.Parameters;
11using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
12using HeuristicLab.Problems.DataAnalysis;
13using HeuristicLab.Problems.DataAnalysis.Symbolic;
14using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
15
16namespace HeuristicLab.Algorithms.DataAnalysis.Glmnet {
17  [Item("Elastic-net Linear Regression (LR)", "Linear regression with elastic-net regularization (wrapper for glmnet)")]
18  [Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 110)]
19  [StorableClass]
20  public sealed class ElasticNetLinearRegression : FixedDataAnalysisAlgorithm<IRegressionProblem> {
21    private const string PenalityParameterName = "Penality";
22    private const string LogLambdaParameterName = "Log10(Lambda)";
23    #region parameters
24    public IFixedValueParameter<DoubleValue> PenalityParameter {
25      get { return (IFixedValueParameter<DoubleValue>)Parameters[PenalityParameterName]; }
26    }
27    public IValueParameter<DoubleValue> LogLambdaParameter {
28      get { return (IValueParameter<DoubleValue>)Parameters[LogLambdaParameterName]; }
29    }
30    #endregion
31    #region properties
32    public double Penality {
33      get { return PenalityParameter.Value.Value; }
34      set { PenalityParameter.Value.Value = value; }
35    }
36    public DoubleValue LogLambda {
37      get { return LogLambdaParameter.Value; }
38      set { LogLambdaParameter.Value = value; }
39    }
40    #endregion
41
42    [StorableConstructor]
43    private ElasticNetLinearRegression(bool deserializing) : base(deserializing) { }
44    private ElasticNetLinearRegression(ElasticNetLinearRegression original, Cloner cloner)
45      : base(original, cloner) {
46    }
47    public ElasticNetLinearRegression()
48      : base() {
49      Problem = new RegressionProblem();
50      Parameters.Add(new FixedValueParameter<DoubleValue>(PenalityParameterName, "Penalty factor for balancing between ridge (0.0) and lasso (1.0) regression", new DoubleValue(0.5)));
51      Parameters.Add(new OptionalValueParameter<DoubleValue>(LogLambdaParameterName, "Optional: the value of lambda for which to calculate an elastic-net solution. lambda == null => calculate the whole path of all lambdas"));
52    }
53
54    [StorableHook(HookType.AfterDeserialization)]
55    private void AfterDeserialization() { }
56
57    public override IDeepCloneable Clone(Cloner cloner) {
58      return new ElasticNetLinearRegression(this, cloner);
59    }
60
61    protected override void Run() {
62      if (LogLambda == null) {
63        CreateSolutionPath();
64      } else {
65        CreateSolution(LogLambda.Value);
66      }
67    }
68
69    private void CreateSolution(double logLambda) {
70      double trainNMSE;
71      double testNMSE;
72      var coeff = CreateElasticNetLinearRegressionSolution(Problem.ProblemData, Penality, Math.Pow(10, logLambda), out trainNMSE, out testNMSE);
73      Results.Add(new Result("NMSE (train)", new DoubleValue(trainNMSE)));
74      Results.Add(new Result("NMSE (test)", new DoubleValue(testNMSE)));
75
76      // copied from LR => TODO: reuse code (but skip coefficients = 0.0)
77      ISymbolicExpressionTree tree = new SymbolicExpressionTree(new ProgramRootSymbol().CreateTreeNode());
78      ISymbolicExpressionTreeNode startNode = new StartSymbol().CreateTreeNode();
79      tree.Root.AddSubtree(startNode);
80      ISymbolicExpressionTreeNode addition = new Addition().CreateTreeNode();
81      startNode.AddSubtree(addition);
82
83      int col = 0;
84      foreach (string column in Problem.ProblemData.AllowedInputVariables) {
85        if (!coeff[col].IsAlmost(0.0)) {
86          VariableTreeNode vNode = (VariableTreeNode)new HeuristicLab.Problems.DataAnalysis.Symbolic.Variable().CreateTreeNode();
87          vNode.VariableName = column;
88          vNode.Weight = coeff[col];
89          addition.AddSubtree(vNode);
90        }
91        col++;
92      }
93
94      if (!coeff[coeff.Length - 1].IsAlmost(0.0)) {
95        ConstantTreeNode cNode = (ConstantTreeNode)new Constant().CreateTreeNode();
96        cNode.Value = coeff[coeff.Length - 1];
97        addition.AddSubtree(cNode);
98      }
99
100      SymbolicRegressionSolution solution = new SymbolicRegressionSolution(
101        new SymbolicRegressionModel(Problem.ProblemData.TargetVariable, tree, new SymbolicDataAnalysisExpressionTreeInterpreter()),
102        (IRegressionProblemData)Problem.ProblemData.Clone());
103      solution.Model.Name = "Elastic-net Linear Regression Model";
104      solution.Name = "Elastic-net Linear Regression Solution";
105
106      Results.Add(new Result(solution.Name, solution.Description, solution));
107    }
108
109    private void CreateSolutionPath() {
110      double[] lambda;
111      double[] trainNMSE;
112      double[] testNMSE;
113      double[,] coeff;
114      double[] intercept;
115      RunElasticNetLinearRegression(Problem.ProblemData, Penality, out lambda, out trainNMSE, out testNMSE, out coeff, out intercept);
116
117      var coeffTable = new DataTable("Coefficient Paths", "The paths of standarized coefficient values over different lambda values");
118      var nLambdas = lambda.Length;
119      var nCoeff = coeff.GetLength(1);
120      var dataRows = new DataRow[nCoeff];
121      var allowedVars = Problem.ProblemData.AllowedInputVariables.ToArray();
122      for (int i = 0; i < nCoeff; i++) {
123        var coeffId = allowedVars[i];
124        double sigma = Problem.ProblemData.Dataset.GetDoubleValues(coeffId).StandardDeviation();
125        var path = Enumerable.Range(0, nLambdas).Select(r => coeff[r, i] * sigma).ToArray();
126        dataRows[i] = new DataRow(coeffId, coeffId, path);
127        coeffTable.Rows.Add(dataRows[i]);
128      }
129
130      Results.Add(new Result(coeffTable.Name, coeffTable.Description, coeffTable));
131
132      var nmsePlot = new ScatterPlot("NMSE", "Path of NMSE values over different lambda values");
133      nmsePlot.VisualProperties.YAxisMaximumAuto = false;
134      nmsePlot.VisualProperties.YAxisMinimumAuto = false;
135      nmsePlot.VisualProperties.XAxisMaximumAuto = false;
136      nmsePlot.VisualProperties.XAxisMinimumAuto = false;
137
138      nmsePlot.VisualProperties.YAxisMinimumFixedValue = 0;
139      nmsePlot.VisualProperties.YAxisMaximumFixedValue = 1.0;
140      nmsePlot.VisualProperties.XAxisTitle = "Log10(Lambda)";
141      nmsePlot.VisualProperties.YAxisTitle = "Normalized mean of squared errors (NMSE)";
142      nmsePlot.Rows.Add(new ScatterPlotDataRow("NMSE (train)", "Path of NMSE values over different lambda values", lambda.Zip(trainNMSE, (l, v) => new Point2D<double>(Math.Log10(l), v))));
143      nmsePlot.Rows.Add(new ScatterPlotDataRow("NMSE (test)", "Path of NMSE values over different lambda values", lambda.Zip(testNMSE, (l, v) => new Point2D<double>(Math.Log10(l), v))));
144      if (lambda.Length > 2) {
145        nmsePlot.VisualProperties.XAxisMinimumFixedValue = Math.Floor(Math.Log10(lambda.Last()));
146        nmsePlot.VisualProperties.XAxisMaximumFixedValue = Math.Ceiling(Math.Log10(lambda.Skip(1).First()));
147      }
148      nmsePlot.Rows["NMSE (train)"].VisualProperties.PointSize = 5;
149      nmsePlot.Rows["NMSE (test)"].VisualProperties.PointSize = 5;
150
151      Results.Add(new Result(nmsePlot.Name, nmsePlot.Description, nmsePlot));
152    }
153
154    public static double[] CreateElasticNetLinearRegressionSolution(IRegressionProblemData problemData, double penalty, double lambda,
155            out double trainNMSE, out double testNMSE,
156            double coeffLowerBound = double.NegativeInfinity, double coeffUpperBound = double.PositiveInfinity) {
157      double[] trainNMSEs;
158      double[] testNMSEs;
159      // run for exactly one lambda
160      var coeffs = CreateElasticNetLinearRegressionSolution(problemData, penalty, new double[] { lambda }, out trainNMSEs, out testNMSEs, coeffLowerBound, coeffUpperBound);
161      trainNMSE = trainNMSEs[0];
162      testNMSE = testNMSEs[0];
163      return coeffs[0];
164    }
165    public static double[][] CreateElasticNetLinearRegressionSolution(IRegressionProblemData problemData, double penalty, double[] lambda,
166            out double[] trainRsq, out double[] testRsq,
167            double coeffLowerBound = double.NegativeInfinity, double coeffUpperBound = double.PositiveInfinity,
168            int maxVars = -1) {
169      // run for multiple user-supplied lambdas
170      double[,] coeff;
171      double[] intercept;
172      RunElasticNetLinearRegression(problemData, penalty, lambda.Length, 1.0, lambda, out lambda, out trainRsq, out testRsq, out coeff, out intercept, coeffLowerBound, coeffUpperBound, maxVars);
173
174      int nRows = intercept.Length;
175      int nCols = coeff.GetLength(1) + 1;
176      double[][] sols = new double[nRows][];
177      for (int solIdx = 0; solIdx < nRows; solIdx++) {
178        sols[solIdx] = new double[nCols];
179        for (int cIdx = 0; cIdx < nCols - 1; cIdx++) {
180          sols[solIdx][cIdx] = coeff[solIdx, cIdx];
181        }
182        sols[solIdx][nCols - 1] = intercept[solIdx];
183      }
184      return sols;
185    }
186
187    public static void RunElasticNetLinearRegression(IRegressionProblemData problemData, double penalty,
188      out double[] lambda, out double[] trainNMSE, out double[] testNMSE, out double[,] coeff, out double[] intercept,
189      double coeffLowerBound = double.NegativeInfinity, double coeffUpperBound = double.PositiveInfinity,
190      int maxVars = -1
191      ) {
192      double[] userLambda = new double[0];
193      // automatically determine lambda values (maximum 100 different lambda values)
194      RunElasticNetLinearRegression(problemData, penalty, 100, 0.0, userLambda, out lambda, out trainNMSE, out testNMSE, out coeff, out intercept, coeffLowerBound, coeffUpperBound, maxVars);
195    }
196
197    /// <summary>
198    /// Elastic net with squared-error-loss for dense predictor matrix, runs the full path of all lambdas
199    /// </summary>
200    /// <param name="problemData">Predictor target matrix x and target vector y</param>
201    /// <param name="penalty">Penalty for balance between ridge (0.0) and lasso (1.0) regression</param>
202    /// <param name="nlam">Maximum number of lambda values (default 100)</param>
203    /// <param name="flmin">User control of lambda values (&lt;1.0 => minimum lambda = flmin * (largest lambda value), >= 1.0 => use supplied lambda values</param>
204    /// <param name="ulam">User supplied lambda values</param>
205    /// <param name="lambda">Output lambda values</param>
206    /// <param name="trainNMSE">Vector of normalized mean of squared error (NMSE = Variance(res) / Variance(y)) values on the training set for each set of coefficients along the path</param>
207    /// <param name="testNMSE">Vector of normalized mean of squared error (NMSE = Variance(res) / Variance(y)) values on the test set for each set of coefficients along the path</param>
208    /// <param name="coeff">Vector of coefficient vectors for each solution along the path</param>
209    /// <param name="intercept">Vector of intercepts for each solution along the path</param>
210    /// <param name="coeffLowerBound">Optional lower bound for all coefficients</param>
211    /// <param name="coeffUpperBound">Optional upper bound for all coefficients</param>
212    /// <param name="maxVars">Maximum allowed number of variables in each solution along the path (-1 => all variables are allowed)</param>
213    private static void RunElasticNetLinearRegression(IRegressionProblemData problemData, double penalty,
214  int nlam, double flmin, double[] ulam, out double[] lambda, out double[] trainNMSE, out double[] testNMSE, out double[,] coeff, out double[] intercept,
215  double coeffLowerBound = double.NegativeInfinity, double coeffUpperBound = double.PositiveInfinity,
216  int maxVars = -1
217  ) {
218      if (penalty < 0.0 || penalty > 1.0) throw new ArgumentException("0 <= penalty <= 1", "penalty");
219
220      double[,] trainX;
221      double[,] testX;
222
223      double[] trainY;
224      double[] testY;
225      int numTrainObs, numTestObs;
226      int numVars;
227      PrepareData(problemData, out trainX, out trainY, out numTrainObs, out testX, out testY, out numTestObs, out numVars);
228
229      int ka = 1; // => covariance updating algorithm
230      double parm = penalty;
231      double[] w = Enumerable.Repeat(1.0, numTrainObs).ToArray(); // all observations have the same weight
232      int[] jd = new int[1]; // do not force to use any of the variables
233      double[] vp = Enumerable.Repeat(1.0, numVars).ToArray(); // all predictor variables are unpenalized
234      double[,] cl = new double[numVars, 2]; // use the same bounds for all coefficients
235      for (int i = 0; i < numVars; i++) {
236        cl[i, 0] = coeffLowerBound;
237        cl[i, 1] = coeffUpperBound;
238      }
239
240      int ne = maxVars > 0 ? maxVars : numVars;
241      int nx = numVars;
242      double thr = 1.0e-5; // default value as recommended in glmnet
243      int isd = 1; //  => regression on standardized predictor variables
244      int intr = 1;  // => do include intercept in model
245      int maxit = 100000; // default value as recommended in glmnet
246      // outputs
247      int lmu = -1;
248      double[,] ca;
249      int[] ia;
250      int[] nin;
251      int nlp = -99;
252      int jerr = -99;
253      double[] trainR2;
254      elnet(ka, parm, numTrainObs, numVars, trainX, trainY, w, jd, vp, cl, ne, nx, nlam, flmin, ulam, thr, isd, intr, maxit, out lmu, out intercept, out ca, out ia, out nin, out trainR2, out lambda, out nlp, out jerr);
255
256      trainNMSE = new double[lmu]; // elnet returns R**2 as 1 - NMSE
257      testNMSE = new double[lmu];
258      coeff = new double[lmu, numVars];
259      for (int solIdx = 0; solIdx < lmu; solIdx++) {
260        trainNMSE[solIdx] = 1.0 - trainR2[solIdx];
261
262        // uncompress coefficients of solution
263        int selectedNin = nin[solIdx];
264        double[] coefficients;
265        double[] selectedCa = new double[nx];
266        for (int i = 0; i < nx; i++) {
267          selectedCa[i] = ca[solIdx, i];
268        }
269
270        // apply to test set to calculate test NMSE values for each lambda step
271        double[] fn;
272        modval(intercept[solIdx], selectedCa, ia, selectedNin, numTestObs, testX, out fn);
273        OnlineCalculatorError error;
274        var nmse = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(testY, fn, out error);
275        if (error != OnlineCalculatorError.None) nmse = double.MaxValue;
276        testNMSE[solIdx] = nmse;
277
278        // uncompress coefficients
279        uncomp(numVars, selectedCa, ia, selectedNin, out coefficients);
280        for (int i = 0; i < coefficients.Length; i++) {
281          coeff[solIdx, i] = coefficients[i];
282        }
283      }
284    }
285
286    private static void PrepareData(IRegressionProblemData problemData, out double[,] trainX, out double[] trainY, out int numTrainObs,
287      out double[,] testX, out double[] testY, out int numTestObs, out int numVars) {
288      numVars = problemData.AllowedInputVariables.Count();
289      numTrainObs = problemData.TrainingIndices.Count();
290      numTestObs = problemData.TestIndices.Count();
291
292      trainX = new double[numVars, numTrainObs];
293      trainY = new double[numTrainObs];
294      testX = new double[numVars, numTestObs];
295      testY = new double[numTestObs];
296      var ds = problemData.Dataset;
297      var targetVar = problemData.TargetVariable;
298      // train
299      int rIdx = 0;
300      foreach (var row in problemData.TrainingIndices) {
301        int cIdx = 0;
302        foreach (var var in problemData.AllowedInputVariables) {
303          trainX[cIdx, rIdx] = ds.GetDoubleValue(var, row);
304          cIdx++;
305        }
306        trainY[rIdx] = ds.GetDoubleValue(targetVar, row);
307        rIdx++;
308      }
309      // test
310      rIdx = 0;
311      foreach (var row in problemData.TestIndices) {
312        int cIdx = 0;
313        foreach (var var in problemData.AllowedInputVariables) {
314          testX[cIdx, rIdx] = ds.GetDoubleValue(var, row);
315          cIdx++;
316        }
317        testY[rIdx] = ds.GetDoubleValue(targetVar, row);
318        rIdx++;
319      }
320    }
321
322
323    #region dllimport
324    /// <summary>Wrapper for elnet procedure in glmnet library</summary>
325    /// (see: https://cran.r-project.org/web/packages/glmnet/index.html)
326    ///
327    ///  ka = algorithm flag
328    ///       ka=1 => covariance updating algorithm
329    ///       ka=2 => naive algorithm
330    ///  parm = penalty member index(0&lt;= parm &lt;= 1)
331    ///         = 0.0 => ridge
332    ///  = 1.0 => lasso
333    ///    no = number of observations
334    ///    ni = number of predictor variables
335    ///  y(no) = response vector(overwritten)
336    ///  w(no)= observation weights(overwritten)
337    ///  jd(jd(1)+1) = predictor variable deletion flag
338    ///  jd(1) = 0  => use all variables
339    ///       jd(1) != 0 => do not use variables jd(2)...jd(jd(1)+1)
340    ///  vp(ni) = relative penalties for each predictor variable
341    ///       vp(j) = 0 => jth variable unpenalized
342    ///    cl(2, ni) = interval constraints on coefficient values(overwritten)
343    ///  cl(1, j) = lower bound for jth coefficient value(&lt;= 0.0)
344    ///  cl(2, j) = upper bound for jth coefficient value(>= 0.0)
345    ///  ne = maximum number of variables allowed to enter largest model
346    /// (stopping criterion)
347    ///  nx = maximum number of variables allowed to enter all modesl
348    ///  along path(memory allocation, nx > ne).
349    ///  nlam = (maximum)number of lamda values
350    ///    flmin = user control of lamda values(>=0)
351    ///  flmin&lt; 1.0 => minimum lamda = flmin * (largest lamda value)
352    ///  flmin >= 1.0 => use supplied lamda values(see below)
353    ///  ulam(nlam) = user supplied lamda values(ignored if flmin&lt; 1.0)
354    ///  thr = convergence threshold for each lamda solution.
355    ///  iterations stop when the maximum reduction in the criterion value
356    ///       as a result of each parameter update over a single pass
357    ///       is less than thr times the null criterion value.
358    /// (suggested value, thr= 1.0e-5)
359    ///  isd = predictor variable standarization flag:
360    ///  isd = 0 => regression on original predictor variables
361    ///       isd = 1 => regression on standardized predictor variables
362    ///       Note: output solutions always reference original
363    ///             variables locations and scales.
364    ///    intr = intercept flag
365    ///       intr = 0 / 1 => don't/do include intercept in model
366    ///  maxit = maximum allowed number of passes over the data for all lambda
367    ///  values (suggested values, maxit = 100000)
368    ///
369    ///  output:
370    ///
371    ///    lmu = actual number of lamda values(solutions)
372    ///  a0(lmu) = intercept values for each solution
373    ///  ca(nx, lmu) = compressed coefficient values for each solution
374    ///  ia(nx) = pointers to compressed coefficients
375    ///  nin(lmu) = number of compressed coefficients for each solution
376    ///  rsq(lmu) = R**2 values for each solution
377    ///  alm(lmu) = lamda values corresponding to each solution
378    ///  nlp = actual number of passes over the data for all lamda values
379    ///    jerr = error flag:
380    ///  jerr = 0 => no error
381    ///  jerr > 0 => fatal error - no output returned
382    ///          jerr&lt; 7777 => memory allocation error
383    ///          jerr = 7777 => all used predictors have zero variance
384    ///          jerr = 10000 => maxval(vp) &lt;= 0.0
385    ///  jerr&lt; 0 => non fatal error - partial output:
386    ///  Solutions for larger lamdas (1:(k-1)) returned.
387    ///  jerr = -k => convergence for kth lamda value not reached
388    ///             after maxit(see above) iterations.
389    ///  jerr = -10000 - k => number of non zero coefficients along path
390    ///             exceeds nx(see above) at kth lamda value.
391    ///
392    private static void elnet(
393      int ka,
394      double parm,
395      int no,
396      int ni,
397      double[,] x,
398      double[] y,
399      double[] w,
400      int[] jd,
401      double[] vp,
402      double[,] cl,
403      int ne,
404      int nx,
405      int nlam,
406      double flmin,
407      double[] ulam,
408      double thr,
409      int isd,
410      int intr,
411      int maxit,
412      // outputs
413      out int lmu,
414      out double[] a0,
415      out double[,] ca,
416      out int[] ia,
417      out int[] nin,
418      out double[] rsq,
419      out double[] alm,
420      out int nlp,
421      out int jerr
422      ) {
423      // initialize output values and allocate arrays big enough
424      a0 = new double[nlam];
425      ca = new double[nlam, nx];
426      ia = new int[nx];
427      nin = new int[nlam];
428      rsq = new double[nlam];
429      alm = new double[nlam];
430      nlp = -1;
431      jerr = -1;
432      lmu = -1;
433
434      // load correct version of native dll based on process (x86/x64)
435      if (Environment.Is64BitProcess) {
436        elnet_x64(ref ka, ref parm, ref no, ref ni, x, y, w, jd, vp, cl, ref ne, ref ni, ref nlam, ref flmin, ulam, ref thr, ref isd, ref intr, ref maxit, ref lmu, a0, ca, ia, nin, rsq, alm, ref nlp, ref jerr);
437      } else {
438        elnet_x86(ref ka, ref parm, ref no, ref ni, x, y, w, jd, vp, cl, ref ne, ref ni, ref nlam, ref flmin, ulam, ref thr, ref isd, ref intr, ref maxit, ref lmu, a0, ca, ia, nin, rsq, alm, ref nlp, ref jerr);
439      }
440      //  jerr = error flag:
441      //  jerr = 0 => no error
442      //  jerr > 0 => fatal error -no output returned
443      //  jerr < 7777 => memory allocation error
444      //          jerr = 7777 => all used predictors have zero variance
445      //  jerr = 10000 => maxval(vp) <= 0.0
446      //  jerr < 0 => non fatal error - partial output:
447      //      c Solutions for larger lamdas (1:(k - 1)) returned.
448      //  jerr = -k => convergence for kth lamda value not reached
449      //             after maxit(see above) iterations.
450      //          jerr = -10000 - k => number of non zero coefficients along path
451      //             exceeds nx(see above) at kth lamda value.
452      if (jerr != 0) {
453        if (jerr > 0 && jerr < 7777) throw new InvalidOperationException("glmnet: memory allocation error");
454        else if (jerr == 7777) throw new InvalidOperationException("glmnet: all used predictors have zero variance");
455        else if (jerr == 10000) throw new InvalidOperationException("glmnet: maxval(vp) <= 0.0");
456        else if (jerr < 0 && jerr > -1000) throw new InvalidOperationException(string.Format("glmnet: convergence for {0}th lamda value not reached after maxit iterations ", -jerr));
457        else if (jerr <= -10000) throw new InvalidOperationException(string.Format("glmnet: number of non zero coefficients along path exceeds number of maximally allowed variables (nx) at {0}th lamda value", -jerr - 10000));
458        else throw new InvalidOperationException(string.Format("glmnet: error {0}", jerr));
459      }
460
461
462      // resize arrays to the capacity that is acutally necessary for the results
463      Array.Resize(ref a0, lmu);
464      Array.Resize(ref nin, lmu);
465      Array.Resize(ref rsq, lmu);
466      Array.Resize(ref alm, lmu);
467    }
468
469    [DllImport("glmnet-x86.dll", EntryPoint = "elnet_", CallingConvention = CallingConvention.Cdecl)]
470    private static extern void elnet_x86(
471      ref int ka,
472      ref double parm,
473      ref int no,
474      ref int ni,
475      double[,] x,
476      double[] y,
477      double[] w,
478      int[] jd,
479      double[] vp,
480      double[,] cl,
481      ref int ne,
482      ref int nx,
483      ref int nlam,
484      ref double flmin,
485      double[] ulam,
486      ref double thr,
487      ref int isd,
488      ref int intr,
489      ref int maxit,
490      // outputs:
491      ref int lmu,
492      [Out] double[] a0,
493      [Out] double[,] ca,
494      [Out] int[] ia,
495      [Out] int[] nin,
496      [Out] double[] rsq,
497      [Out] double[] alm,
498      ref int nlp,
499      ref int jerr
500      );
501    [DllImport("glmnet-x64.dll", EntryPoint = "elnet_", CallingConvention = CallingConvention.Cdecl)]
502    private static extern void elnet_x64(
503      ref int ka,
504      ref double parm,
505      ref int no,
506      ref int ni,
507      double[,] x,
508      double[] y,
509      double[] w,
510      int[] jd,
511      double[] vp,
512      double[,] cl,
513      ref int ne,
514      ref int nx,
515      ref int nlam,
516      ref double flmin,
517      double[] ulam,
518      ref double thr,
519      ref int isd,
520      ref int intr,
521      ref int maxit,
522      // outputs:
523      ref int lmu,
524      [Out] double[] a0,
525      [Out] double[,] ca,
526      [Out] int[] ia,
527      [Out] int[] nin,
528      [Out] double[] rsq,
529      [Out] double[] alm,
530      ref int nlp,
531      ref int jerr
532      );
533
534
535    /// <summary>Wrapper for uncompress coefficient vector for particular solution in glmnet</summary>
536    /// (see: https://cran.r-project.org/web/packages/glmnet/index.html)
537    ///
538    /// call uncomp(ni, ca, ia, nin, a)
539    ///
540    /// input:
541    ///
542    ///    ni = total number of predictor variables
543    ///    ca(nx) = compressed coefficient values for the solution
544    /// ia(nx) = pointers to compressed coefficients
545    /// nin = number of compressed coefficients for the solution
546    ///
547    /// output:
548    ///
549    ///    a(ni) =  uncompressed coefficient vector
550    ///             referencing original variables
551    ///
552    private static void uncomp(int numVars, double[] ca, int[] ia, int nin, out double[] a) {
553      a = new double[numVars];
554      // load correct version of native dll based on process (x86/x64)
555      if (Environment.Is64BitProcess) {
556        uncomp_x64(ref numVars, ca, ia, ref nin, a);
557      } else {
558        uncomp_x86(ref numVars, ca, ia, ref nin, a);
559      }
560    }
561
562    [DllImport("glmnet-x86.dll", EntryPoint = "uncomp_", CallingConvention = CallingConvention.Cdecl)]
563    private static extern void uncomp_x86(ref int numVars, double[] ca, int[] ia, ref int nin, double[] a);
564    [DllImport("glmnet-x64.dll", EntryPoint = "uncomp_", CallingConvention = CallingConvention.Cdecl)]
565    private static extern void uncomp_x64(ref int numVars, double[] ca, int[] ia, ref int nin, double[] a);
566
567    private static void modval(double a0, double[] ca, int[] ia, int nin, int numObs, double[,] x, out double[] fn) {
568      fn = new double[numObs];
569      if (Environment.Is64BitProcess) {
570        modval_x64(ref a0, ca, ia, ref nin, ref numObs, x, fn);
571      } else {
572        modval_x86(ref a0, ca, ia, ref nin, ref numObs, x, fn);
573      }
574    }
575    // evaluate linear model from compressed coefficients and
576    // uncompressed predictor matrix:
577    //
578    // call modval(a0, ca, ia, nin, n, x, f);
579    //   c
580    //   c input:
581    //
582    //    a0 = intercept
583    //    ca(nx) = compressed coefficient values for a solution
584    // ia(nx) = pointers to compressed coefficients
585    // nin = number of compressed coefficients for solution
586    //    n = number of predictor vectors(observations)
587    // x(n, ni) = full(uncompressed) predictor matrix
588    //
589    // output:
590    //
591    //    f(n) = model predictions
592    [DllImport("glmnet-x86.dll", EntryPoint = "modval_", CallingConvention = CallingConvention.Cdecl)]
593    private static extern void modval_x86(ref double a0, double[] ca, int[] ia, ref int nin, ref int numObs, [Out] double[,] x, double[] fn);
594    [DllImport("glmnet-x64.dll", EntryPoint = "modval_", CallingConvention = CallingConvention.Cdecl)]
595    private static extern void modval_x64(ref double a0, double[] ca, int[] ia, ref int nin, ref int numObs, [Out] double[,] x, double[] fn);
596
597    #endregion
598  }
599}
Note: See TracBrowser for help on using the repository browser.