1 |
|
---|
2 | using System;
|
---|
3 |
|
---|
4 | namespace alglib
|
---|
5 | {
|
---|
6 | public class xblas
|
---|
7 | {
|
---|
8 | /*************************************************************************
|
---|
9 | More precise dot-product. Absolute error of subroutine result is about
|
---|
10 | 1 ulp of max(MX,V), where:
|
---|
11 | MX = max( |a[i]*b[i]| )
|
---|
12 | V = |(a,b)|
|
---|
13 |
|
---|
14 | INPUT PARAMETERS
|
---|
15 | A - array[0..N-1], vector 1
|
---|
16 | B - array[0..N-1], vector 2
|
---|
17 | N - vectors length, N<2^29.
|
---|
18 | Temp - array[0..N-1], pre-allocated temporary storage
|
---|
19 |
|
---|
20 | OUTPUT PARAMETERS
|
---|
21 | R - (A,B)
|
---|
22 | RErr - estimate of error. This estimate accounts for both errors
|
---|
23 | during calculation of (A,B) and errors introduced by
|
---|
24 | rounding of A and B to fit in double (about 1 ulp).
|
---|
25 |
|
---|
26 | -- ALGLIB --
|
---|
27 | Copyright 24.08.2009 by Bochkanov Sergey
|
---|
28 | *************************************************************************/
|
---|
29 | public static void xdot(ref double[] a,
|
---|
30 | ref double[] b,
|
---|
31 | int n,
|
---|
32 | ref double[] temp,
|
---|
33 | ref double r,
|
---|
34 | ref double rerr)
|
---|
35 | {
|
---|
36 | int i = 0;
|
---|
37 | double mx = 0;
|
---|
38 | double v = 0;
|
---|
39 |
|
---|
40 |
|
---|
41 | //
|
---|
42 | // special cases:
|
---|
43 | // * N=0
|
---|
44 | //
|
---|
45 | if( n==0 )
|
---|
46 | {
|
---|
47 | r = 0;
|
---|
48 | rerr = 0;
|
---|
49 | return;
|
---|
50 | }
|
---|
51 | mx = 0;
|
---|
52 | for(i=0; i<=n-1; i++)
|
---|
53 | {
|
---|
54 | v = a[i]*b[i];
|
---|
55 | temp[i] = v;
|
---|
56 | mx = Math.Max(mx, Math.Abs(v));
|
---|
57 | }
|
---|
58 | if( (double)(mx)==(double)(0) )
|
---|
59 | {
|
---|
60 | r = 0;
|
---|
61 | rerr = 0;
|
---|
62 | return;
|
---|
63 | }
|
---|
64 | xsum(ref temp, mx, n, ref r, ref rerr);
|
---|
65 | }
|
---|
66 |
|
---|
67 |
|
---|
68 | /*************************************************************************
|
---|
69 | More precise complex dot-product. Absolute error of subroutine result is
|
---|
70 | about 1 ulp of max(MX,V), where:
|
---|
71 | MX = max( |a[i]*b[i]| )
|
---|
72 | V = |(a,b)|
|
---|
73 |
|
---|
74 | INPUT PARAMETERS
|
---|
75 | A - array[0..N-1], vector 1
|
---|
76 | B - array[0..N-1], vector 2
|
---|
77 | N - vectors length, N<2^29.
|
---|
78 | Temp - array[0..2*N-1], pre-allocated temporary storage
|
---|
79 |
|
---|
80 | OUTPUT PARAMETERS
|
---|
81 | R - (A,B)
|
---|
82 | RErr - estimate of error. This estimate accounts for both errors
|
---|
83 | during calculation of (A,B) and errors introduced by
|
---|
84 | rounding of A and B to fit in double (about 1 ulp).
|
---|
85 |
|
---|
86 | -- ALGLIB --
|
---|
87 | Copyright 27.01.2010 by Bochkanov Sergey
|
---|
88 | *************************************************************************/
|
---|
89 | public static void xcdot(ref AP.Complex[] a,
|
---|
90 | ref AP.Complex[] b,
|
---|
91 | int n,
|
---|
92 | ref double[] temp,
|
---|
93 | ref AP.Complex r,
|
---|
94 | ref double rerr)
|
---|
95 | {
|
---|
96 | int i = 0;
|
---|
97 | double mx = 0;
|
---|
98 | double v = 0;
|
---|
99 | double rerrx = 0;
|
---|
100 | double rerry = 0;
|
---|
101 |
|
---|
102 |
|
---|
103 | //
|
---|
104 | // special cases:
|
---|
105 | // * N=0
|
---|
106 | //
|
---|
107 | if( n==0 )
|
---|
108 | {
|
---|
109 | r = 0;
|
---|
110 | rerr = 0;
|
---|
111 | return;
|
---|
112 | }
|
---|
113 |
|
---|
114 | //
|
---|
115 | // calculate real part
|
---|
116 | //
|
---|
117 | mx = 0;
|
---|
118 | for(i=0; i<=n-1; i++)
|
---|
119 | {
|
---|
120 | v = a[i].x*b[i].x;
|
---|
121 | temp[2*i+0] = v;
|
---|
122 | mx = Math.Max(mx, Math.Abs(v));
|
---|
123 | v = -(a[i].y*b[i].y);
|
---|
124 | temp[2*i+1] = v;
|
---|
125 | mx = Math.Max(mx, Math.Abs(v));
|
---|
126 | }
|
---|
127 | if( (double)(mx)==(double)(0) )
|
---|
128 | {
|
---|
129 | r.x = 0;
|
---|
130 | rerrx = 0;
|
---|
131 | }
|
---|
132 | else
|
---|
133 | {
|
---|
134 | xsum(ref temp, mx, 2*n, ref r.x, ref rerrx);
|
---|
135 | }
|
---|
136 |
|
---|
137 | //
|
---|
138 | // calculate imaginary part
|
---|
139 | //
|
---|
140 | mx = 0;
|
---|
141 | for(i=0; i<=n-1; i++)
|
---|
142 | {
|
---|
143 | v = a[i].x*b[i].y;
|
---|
144 | temp[2*i+0] = v;
|
---|
145 | mx = Math.Max(mx, Math.Abs(v));
|
---|
146 | v = a[i].y*b[i].x;
|
---|
147 | temp[2*i+1] = v;
|
---|
148 | mx = Math.Max(mx, Math.Abs(v));
|
---|
149 | }
|
---|
150 | if( (double)(mx)==(double)(0) )
|
---|
151 | {
|
---|
152 | r.y = 0;
|
---|
153 | rerry = 0;
|
---|
154 | }
|
---|
155 | else
|
---|
156 | {
|
---|
157 | xsum(ref temp, mx, 2*n, ref r.y, ref rerry);
|
---|
158 | }
|
---|
159 |
|
---|
160 | //
|
---|
161 | // total error
|
---|
162 | //
|
---|
163 | if( (double)(rerrx)==(double)(0) & (double)(rerry)==(double)(0) )
|
---|
164 | {
|
---|
165 | rerr = 0;
|
---|
166 | }
|
---|
167 | else
|
---|
168 | {
|
---|
169 | rerr = Math.Max(rerrx, rerry)*Math.Sqrt(1+AP.Math.Sqr(Math.Min(rerrx, rerry)/Math.Max(rerrx, rerry)));
|
---|
170 | }
|
---|
171 | }
|
---|
172 |
|
---|
173 |
|
---|
174 | /*************************************************************************
|
---|
175 | Internal subroutine for extra-precise calculation of SUM(w[i]).
|
---|
176 |
|
---|
177 | INPUT PARAMETERS:
|
---|
178 | W - array[0..N-1], values to be added
|
---|
179 | W is modified during calculations.
|
---|
180 | MX - max(W[i])
|
---|
181 | N - array size
|
---|
182 |
|
---|
183 | OUTPUT PARAMETERS:
|
---|
184 | R - SUM(w[i])
|
---|
185 | RErr- error estimate for R
|
---|
186 |
|
---|
187 | -- ALGLIB --
|
---|
188 | Copyright 24.08.2009 by Bochkanov Sergey
|
---|
189 | *************************************************************************/
|
---|
190 | private static void xsum(ref double[] w,
|
---|
191 | double mx,
|
---|
192 | int n,
|
---|
193 | ref double r,
|
---|
194 | ref double rerr)
|
---|
195 | {
|
---|
196 | int i = 0;
|
---|
197 | int k = 0;
|
---|
198 | int ks = 0;
|
---|
199 | double v = 0;
|
---|
200 | double s = 0;
|
---|
201 | double ln2 = 0;
|
---|
202 | double chunk = 0;
|
---|
203 | double invchunk = 0;
|
---|
204 | bool allzeros = new bool();
|
---|
205 | int i_ = 0;
|
---|
206 |
|
---|
207 |
|
---|
208 | //
|
---|
209 | // special cases:
|
---|
210 | // * N=0
|
---|
211 | // * N is too large to use integer arithmetics
|
---|
212 | //
|
---|
213 | if( n==0 )
|
---|
214 | {
|
---|
215 | r = 0;
|
---|
216 | rerr = 0;
|
---|
217 | return;
|
---|
218 | }
|
---|
219 | if( (double)(mx)==(double)(0) )
|
---|
220 | {
|
---|
221 | r = 0;
|
---|
222 | rerr = 0;
|
---|
223 | return;
|
---|
224 | }
|
---|
225 | System.Diagnostics.Debug.Assert(n<536870912, "XDot: N is too large!");
|
---|
226 |
|
---|
227 | //
|
---|
228 | // Prepare
|
---|
229 | //
|
---|
230 | ln2 = Math.Log(2);
|
---|
231 | rerr = mx*AP.Math.MachineEpsilon;
|
---|
232 |
|
---|
233 | //
|
---|
234 | // 1. find S such that 0.5<=S*MX<1
|
---|
235 | // 2. multiply W by S, so task is normalized in some sense
|
---|
236 | // 3. S:=1/S so we can obtain original vector multiplying by S
|
---|
237 | //
|
---|
238 | k = (int)Math.Round(Math.Log(mx)/ln2);
|
---|
239 | s = xfastpow(2, -k);
|
---|
240 | while( (double)(s*mx)>=(double)(1) )
|
---|
241 | {
|
---|
242 | s = 0.5*s;
|
---|
243 | }
|
---|
244 | while( (double)(s*mx)<(double)(0.5) )
|
---|
245 | {
|
---|
246 | s = 2*s;
|
---|
247 | }
|
---|
248 | for(i_=0; i_<=n-1;i_++)
|
---|
249 | {
|
---|
250 | w[i_] = s*w[i_];
|
---|
251 | }
|
---|
252 | s = 1/s;
|
---|
253 |
|
---|
254 | //
|
---|
255 | // find Chunk=2^M such that N*Chunk<2^29
|
---|
256 | //
|
---|
257 | // we have chosen upper limit (2^29) with enough space left
|
---|
258 | // to tolerate possible problems with rounding and N's close
|
---|
259 | // to the limit, so we don't want to be very strict here.
|
---|
260 | //
|
---|
261 | k = (int)(Math.Log((double)(536870912)/(double)(n))/ln2);
|
---|
262 | chunk = xfastpow(2, k);
|
---|
263 | if( (double)(chunk)<(double)(2) )
|
---|
264 | {
|
---|
265 | chunk = 2;
|
---|
266 | }
|
---|
267 | invchunk = 1/chunk;
|
---|
268 |
|
---|
269 | //
|
---|
270 | // calculate result
|
---|
271 | //
|
---|
272 | r = 0;
|
---|
273 | for(i_=0; i_<=n-1;i_++)
|
---|
274 | {
|
---|
275 | w[i_] = chunk*w[i_];
|
---|
276 | }
|
---|
277 | while( true )
|
---|
278 | {
|
---|
279 | s = s*invchunk;
|
---|
280 | allzeros = true;
|
---|
281 | ks = 0;
|
---|
282 | for(i=0; i<=n-1; i++)
|
---|
283 | {
|
---|
284 | v = w[i];
|
---|
285 | k = (int)(v);
|
---|
286 | if( (double)(v)!=(double)(k) )
|
---|
287 | {
|
---|
288 | allzeros = false;
|
---|
289 | }
|
---|
290 | w[i] = chunk*(v-k);
|
---|
291 | ks = ks+k;
|
---|
292 | }
|
---|
293 | r = r+s*ks;
|
---|
294 | v = Math.Abs(r);
|
---|
295 | if( allzeros | (double)(s*n+mx)==(double)(mx) )
|
---|
296 | {
|
---|
297 | break;
|
---|
298 | }
|
---|
299 | }
|
---|
300 |
|
---|
301 | //
|
---|
302 | // correct error
|
---|
303 | //
|
---|
304 | rerr = Math.Max(rerr, Math.Abs(r)*AP.Math.MachineEpsilon);
|
---|
305 | }
|
---|
306 |
|
---|
307 |
|
---|
308 | /*************************************************************************
|
---|
309 | Fast Pow
|
---|
310 |
|
---|
311 | -- ALGLIB --
|
---|
312 | Copyright 24.08.2009 by Bochkanov Sergey
|
---|
313 | *************************************************************************/
|
---|
314 | private static double xfastpow(double r,
|
---|
315 | int n)
|
---|
316 | {
|
---|
317 | double result = 0;
|
---|
318 |
|
---|
319 | if( n>0 )
|
---|
320 | {
|
---|
321 | if( n%2==0 )
|
---|
322 | {
|
---|
323 | result = AP.Math.Sqr(xfastpow(r, n/2));
|
---|
324 | }
|
---|
325 | else
|
---|
326 | {
|
---|
327 | result = r*xfastpow(r, n-1);
|
---|
328 | }
|
---|
329 | return result;
|
---|
330 | }
|
---|
331 | if( n==0 )
|
---|
332 | {
|
---|
333 | result = 1;
|
---|
334 | }
|
---|
335 | if( n<0 )
|
---|
336 | {
|
---|
337 | result = xfastpow(1/r, -n);
|
---|
338 | }
|
---|
339 | return result;
|
---|
340 | }
|
---|
341 | }
|
---|
342 | }
|
---|