1 | /*************************************************************************
|
---|
2 | This file is a part of ALGLIB project.
|
---|
3 |
|
---|
4 | >>> SOURCE LICENSE >>>
|
---|
5 | This program is free software; you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
8 | License, or (at your option) any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | A copy of the GNU General Public License is available at
|
---|
16 | http://www.fsf.org/licensing/licenses
|
---|
17 |
|
---|
18 | >>> END OF LICENSE >>>
|
---|
19 | *************************************************************************/
|
---|
20 |
|
---|
21 | using System;
|
---|
22 |
|
---|
23 | namespace alglib
|
---|
24 | {
|
---|
25 | public class safesolve
|
---|
26 | {
|
---|
27 | /*************************************************************************
|
---|
28 | Real implementation of CMatrixScaledTRSafeSolve
|
---|
29 |
|
---|
30 | -- ALGLIB routine --
|
---|
31 | 21.01.2010
|
---|
32 | Bochkanov Sergey
|
---|
33 | *************************************************************************/
|
---|
34 | public static bool rmatrixscaledtrsafesolve(ref double[,] a,
|
---|
35 | double sa,
|
---|
36 | int n,
|
---|
37 | ref double[] x,
|
---|
38 | bool isupper,
|
---|
39 | int trans,
|
---|
40 | bool isunit,
|
---|
41 | double maxgrowth)
|
---|
42 | {
|
---|
43 | bool result = new bool();
|
---|
44 | double lnmax = 0;
|
---|
45 | double nrmb = 0;
|
---|
46 | double nrmx = 0;
|
---|
47 | int i = 0;
|
---|
48 | AP.Complex alpha = 0;
|
---|
49 | AP.Complex beta = 0;
|
---|
50 | double vr = 0;
|
---|
51 | AP.Complex cx = 0;
|
---|
52 | double[] tmp = new double[0];
|
---|
53 | int i_ = 0;
|
---|
54 |
|
---|
55 | System.Diagnostics.Debug.Assert(n>0, "RMatrixTRSafeSolve: incorrect N!");
|
---|
56 | System.Diagnostics.Debug.Assert(trans==0 | trans==1, "RMatrixTRSafeSolve: incorrect Trans!");
|
---|
57 | result = true;
|
---|
58 | lnmax = Math.Log(AP.Math.MaxRealNumber);
|
---|
59 |
|
---|
60 | //
|
---|
61 | // Quick return if possible
|
---|
62 | //
|
---|
63 | if( n<=0 )
|
---|
64 | {
|
---|
65 | return result;
|
---|
66 | }
|
---|
67 |
|
---|
68 | //
|
---|
69 | // Load norms: right part and X
|
---|
70 | //
|
---|
71 | nrmb = 0;
|
---|
72 | for(i=0; i<=n-1; i++)
|
---|
73 | {
|
---|
74 | nrmb = Math.Max(nrmb, Math.Abs(x[i]));
|
---|
75 | }
|
---|
76 | nrmx = 0;
|
---|
77 |
|
---|
78 | //
|
---|
79 | // Solve
|
---|
80 | //
|
---|
81 | tmp = new double[n];
|
---|
82 | result = true;
|
---|
83 | if( isupper & trans==0 )
|
---|
84 | {
|
---|
85 |
|
---|
86 | //
|
---|
87 | // U*x = b
|
---|
88 | //
|
---|
89 | for(i=n-1; i>=0; i--)
|
---|
90 | {
|
---|
91 |
|
---|
92 | //
|
---|
93 | // Task is reduced to alpha*x[i] = beta
|
---|
94 | //
|
---|
95 | if( isunit )
|
---|
96 | {
|
---|
97 | alpha = sa;
|
---|
98 | }
|
---|
99 | else
|
---|
100 | {
|
---|
101 | alpha = a[i,i]*sa;
|
---|
102 | }
|
---|
103 | if( i<n-1 )
|
---|
104 | {
|
---|
105 | for(i_=i+1; i_<=n-1;i_++)
|
---|
106 | {
|
---|
107 | tmp[i_] = sa*a[i,i_];
|
---|
108 | }
|
---|
109 | vr = 0.0;
|
---|
110 | for(i_=i+1; i_<=n-1;i_++)
|
---|
111 | {
|
---|
112 | vr += tmp[i_]*x[i_];
|
---|
113 | }
|
---|
114 | beta = x[i]-vr;
|
---|
115 | }
|
---|
116 | else
|
---|
117 | {
|
---|
118 | beta = x[i];
|
---|
119 | }
|
---|
120 |
|
---|
121 | //
|
---|
122 | // solve alpha*x[i] = beta
|
---|
123 | //
|
---|
124 | result = cbasicsolveandupdate(alpha, beta, lnmax, nrmb, maxgrowth, ref nrmx, ref cx);
|
---|
125 | if( !result )
|
---|
126 | {
|
---|
127 | return result;
|
---|
128 | }
|
---|
129 | x[i] = cx.x;
|
---|
130 | }
|
---|
131 | return result;
|
---|
132 | }
|
---|
133 | if( !isupper & trans==0 )
|
---|
134 | {
|
---|
135 |
|
---|
136 | //
|
---|
137 | // L*x = b
|
---|
138 | //
|
---|
139 | for(i=0; i<=n-1; i++)
|
---|
140 | {
|
---|
141 |
|
---|
142 | //
|
---|
143 | // Task is reduced to alpha*x[i] = beta
|
---|
144 | //
|
---|
145 | if( isunit )
|
---|
146 | {
|
---|
147 | alpha = sa;
|
---|
148 | }
|
---|
149 | else
|
---|
150 | {
|
---|
151 | alpha = a[i,i]*sa;
|
---|
152 | }
|
---|
153 | if( i>0 )
|
---|
154 | {
|
---|
155 | for(i_=0; i_<=i-1;i_++)
|
---|
156 | {
|
---|
157 | tmp[i_] = sa*a[i,i_];
|
---|
158 | }
|
---|
159 | vr = 0.0;
|
---|
160 | for(i_=0; i_<=i-1;i_++)
|
---|
161 | {
|
---|
162 | vr += tmp[i_]*x[i_];
|
---|
163 | }
|
---|
164 | beta = x[i]-vr;
|
---|
165 | }
|
---|
166 | else
|
---|
167 | {
|
---|
168 | beta = x[i];
|
---|
169 | }
|
---|
170 |
|
---|
171 | //
|
---|
172 | // solve alpha*x[i] = beta
|
---|
173 | //
|
---|
174 | result = cbasicsolveandupdate(alpha, beta, lnmax, nrmb, maxgrowth, ref nrmx, ref cx);
|
---|
175 | if( !result )
|
---|
176 | {
|
---|
177 | return result;
|
---|
178 | }
|
---|
179 | x[i] = cx.x;
|
---|
180 | }
|
---|
181 | return result;
|
---|
182 | }
|
---|
183 | if( isupper & trans==1 )
|
---|
184 | {
|
---|
185 |
|
---|
186 | //
|
---|
187 | // U^T*x = b
|
---|
188 | //
|
---|
189 | for(i=0; i<=n-1; i++)
|
---|
190 | {
|
---|
191 |
|
---|
192 | //
|
---|
193 | // Task is reduced to alpha*x[i] = beta
|
---|
194 | //
|
---|
195 | if( isunit )
|
---|
196 | {
|
---|
197 | alpha = sa;
|
---|
198 | }
|
---|
199 | else
|
---|
200 | {
|
---|
201 | alpha = a[i,i]*sa;
|
---|
202 | }
|
---|
203 | beta = x[i];
|
---|
204 |
|
---|
205 | //
|
---|
206 | // solve alpha*x[i] = beta
|
---|
207 | //
|
---|
208 | result = cbasicsolveandupdate(alpha, beta, lnmax, nrmb, maxgrowth, ref nrmx, ref cx);
|
---|
209 | if( !result )
|
---|
210 | {
|
---|
211 | return result;
|
---|
212 | }
|
---|
213 | x[i] = cx.x;
|
---|
214 |
|
---|
215 | //
|
---|
216 | // update the rest of right part
|
---|
217 | //
|
---|
218 | if( i<n-1 )
|
---|
219 | {
|
---|
220 | vr = cx.x;
|
---|
221 | for(i_=i+1; i_<=n-1;i_++)
|
---|
222 | {
|
---|
223 | tmp[i_] = sa*a[i,i_];
|
---|
224 | }
|
---|
225 | for(i_=i+1; i_<=n-1;i_++)
|
---|
226 | {
|
---|
227 | x[i_] = x[i_] - vr*tmp[i_];
|
---|
228 | }
|
---|
229 | }
|
---|
230 | }
|
---|
231 | return result;
|
---|
232 | }
|
---|
233 | if( !isupper & trans==1 )
|
---|
234 | {
|
---|
235 |
|
---|
236 | //
|
---|
237 | // L^T*x = b
|
---|
238 | //
|
---|
239 | for(i=n-1; i>=0; i--)
|
---|
240 | {
|
---|
241 |
|
---|
242 | //
|
---|
243 | // Task is reduced to alpha*x[i] = beta
|
---|
244 | //
|
---|
245 | if( isunit )
|
---|
246 | {
|
---|
247 | alpha = sa;
|
---|
248 | }
|
---|
249 | else
|
---|
250 | {
|
---|
251 | alpha = a[i,i]*sa;
|
---|
252 | }
|
---|
253 | beta = x[i];
|
---|
254 |
|
---|
255 | //
|
---|
256 | // solve alpha*x[i] = beta
|
---|
257 | //
|
---|
258 | result = cbasicsolveandupdate(alpha, beta, lnmax, nrmb, maxgrowth, ref nrmx, ref cx);
|
---|
259 | if( !result )
|
---|
260 | {
|
---|
261 | return result;
|
---|
262 | }
|
---|
263 | x[i] = cx.x;
|
---|
264 |
|
---|
265 | //
|
---|
266 | // update the rest of right part
|
---|
267 | //
|
---|
268 | if( i>0 )
|
---|
269 | {
|
---|
270 | vr = cx.x;
|
---|
271 | for(i_=0; i_<=i-1;i_++)
|
---|
272 | {
|
---|
273 | tmp[i_] = sa*a[i,i_];
|
---|
274 | }
|
---|
275 | for(i_=0; i_<=i-1;i_++)
|
---|
276 | {
|
---|
277 | x[i_] = x[i_] - vr*tmp[i_];
|
---|
278 | }
|
---|
279 | }
|
---|
280 | }
|
---|
281 | return result;
|
---|
282 | }
|
---|
283 | result = false;
|
---|
284 | return result;
|
---|
285 | }
|
---|
286 |
|
---|
287 |
|
---|
288 | /*************************************************************************
|
---|
289 | Internal subroutine for safe solution of
|
---|
290 |
|
---|
291 | SA*op(A)=b
|
---|
292 |
|
---|
293 | where A is NxN upper/lower triangular/unitriangular matrix, op(A) is
|
---|
294 | either identity transform, transposition or Hermitian transposition, SA is
|
---|
295 | a scaling factor such that max(|SA*A[i,j]|) is close to 1.0 in magnutude.
|
---|
296 |
|
---|
297 | This subroutine limits relative growth of solution (in inf-norm) by
|
---|
298 | MaxGrowth, returning False if growth exceeds MaxGrowth. Degenerate or
|
---|
299 | near-degenerate matrices are handled correctly (False is returned) as long
|
---|
300 | as MaxGrowth is significantly less than MaxRealNumber/norm(b).
|
---|
301 |
|
---|
302 | -- ALGLIB routine --
|
---|
303 | 21.01.2010
|
---|
304 | Bochkanov Sergey
|
---|
305 | *************************************************************************/
|
---|
306 | public static bool cmatrixscaledtrsafesolve(ref AP.Complex[,] a,
|
---|
307 | double sa,
|
---|
308 | int n,
|
---|
309 | ref AP.Complex[] x,
|
---|
310 | bool isupper,
|
---|
311 | int trans,
|
---|
312 | bool isunit,
|
---|
313 | double maxgrowth)
|
---|
314 | {
|
---|
315 | bool result = new bool();
|
---|
316 | double lnmax = 0;
|
---|
317 | double nrmb = 0;
|
---|
318 | double nrmx = 0;
|
---|
319 | int i = 0;
|
---|
320 | AP.Complex alpha = 0;
|
---|
321 | AP.Complex beta = 0;
|
---|
322 | AP.Complex vc = 0;
|
---|
323 | AP.Complex[] tmp = new AP.Complex[0];
|
---|
324 | int i_ = 0;
|
---|
325 |
|
---|
326 | System.Diagnostics.Debug.Assert(n>0, "CMatrixTRSafeSolve: incorrect N!");
|
---|
327 | System.Diagnostics.Debug.Assert(trans==0 | trans==1 | trans==2, "CMatrixTRSafeSolve: incorrect Trans!");
|
---|
328 | result = true;
|
---|
329 | lnmax = Math.Log(AP.Math.MaxRealNumber);
|
---|
330 |
|
---|
331 | //
|
---|
332 | // Quick return if possible
|
---|
333 | //
|
---|
334 | if( n<=0 )
|
---|
335 | {
|
---|
336 | return result;
|
---|
337 | }
|
---|
338 |
|
---|
339 | //
|
---|
340 | // Load norms: right part and X
|
---|
341 | //
|
---|
342 | nrmb = 0;
|
---|
343 | for(i=0; i<=n-1; i++)
|
---|
344 | {
|
---|
345 | nrmb = Math.Max(nrmb, AP.Math.AbsComplex(x[i]));
|
---|
346 | }
|
---|
347 | nrmx = 0;
|
---|
348 |
|
---|
349 | //
|
---|
350 | // Solve
|
---|
351 | //
|
---|
352 | tmp = new AP.Complex[n];
|
---|
353 | result = true;
|
---|
354 | if( isupper & trans==0 )
|
---|
355 | {
|
---|
356 |
|
---|
357 | //
|
---|
358 | // U*x = b
|
---|
359 | //
|
---|
360 | for(i=n-1; i>=0; i--)
|
---|
361 | {
|
---|
362 |
|
---|
363 | //
|
---|
364 | // Task is reduced to alpha*x[i] = beta
|
---|
365 | //
|
---|
366 | if( isunit )
|
---|
367 | {
|
---|
368 | alpha = sa;
|
---|
369 | }
|
---|
370 | else
|
---|
371 | {
|
---|
372 | alpha = a[i,i]*sa;
|
---|
373 | }
|
---|
374 | if( i<n-1 )
|
---|
375 | {
|
---|
376 | for(i_=i+1; i_<=n-1;i_++)
|
---|
377 | {
|
---|
378 | tmp[i_] = sa*a[i,i_];
|
---|
379 | }
|
---|
380 | vc = 0.0;
|
---|
381 | for(i_=i+1; i_<=n-1;i_++)
|
---|
382 | {
|
---|
383 | vc += tmp[i_]*x[i_];
|
---|
384 | }
|
---|
385 | beta = x[i]-vc;
|
---|
386 | }
|
---|
387 | else
|
---|
388 | {
|
---|
389 | beta = x[i];
|
---|
390 | }
|
---|
391 |
|
---|
392 | //
|
---|
393 | // solve alpha*x[i] = beta
|
---|
394 | //
|
---|
395 | result = cbasicsolveandupdate(alpha, beta, lnmax, nrmb, maxgrowth, ref nrmx, ref vc);
|
---|
396 | if( !result )
|
---|
397 | {
|
---|
398 | return result;
|
---|
399 | }
|
---|
400 | x[i] = vc;
|
---|
401 | }
|
---|
402 | return result;
|
---|
403 | }
|
---|
404 | if( !isupper & trans==0 )
|
---|
405 | {
|
---|
406 |
|
---|
407 | //
|
---|
408 | // L*x = b
|
---|
409 | //
|
---|
410 | for(i=0; i<=n-1; i++)
|
---|
411 | {
|
---|
412 |
|
---|
413 | //
|
---|
414 | // Task is reduced to alpha*x[i] = beta
|
---|
415 | //
|
---|
416 | if( isunit )
|
---|
417 | {
|
---|
418 | alpha = sa;
|
---|
419 | }
|
---|
420 | else
|
---|
421 | {
|
---|
422 | alpha = a[i,i]*sa;
|
---|
423 | }
|
---|
424 | if( i>0 )
|
---|
425 | {
|
---|
426 | for(i_=0; i_<=i-1;i_++)
|
---|
427 | {
|
---|
428 | tmp[i_] = sa*a[i,i_];
|
---|
429 | }
|
---|
430 | vc = 0.0;
|
---|
431 | for(i_=0; i_<=i-1;i_++)
|
---|
432 | {
|
---|
433 | vc += tmp[i_]*x[i_];
|
---|
434 | }
|
---|
435 | beta = x[i]-vc;
|
---|
436 | }
|
---|
437 | else
|
---|
438 | {
|
---|
439 | beta = x[i];
|
---|
440 | }
|
---|
441 |
|
---|
442 | //
|
---|
443 | // solve alpha*x[i] = beta
|
---|
444 | //
|
---|
445 | result = cbasicsolveandupdate(alpha, beta, lnmax, nrmb, maxgrowth, ref nrmx, ref vc);
|
---|
446 | if( !result )
|
---|
447 | {
|
---|
448 | return result;
|
---|
449 | }
|
---|
450 | x[i] = vc;
|
---|
451 | }
|
---|
452 | return result;
|
---|
453 | }
|
---|
454 | if( isupper & trans==1 )
|
---|
455 | {
|
---|
456 |
|
---|
457 | //
|
---|
458 | // U^T*x = b
|
---|
459 | //
|
---|
460 | for(i=0; i<=n-1; i++)
|
---|
461 | {
|
---|
462 |
|
---|
463 | //
|
---|
464 | // Task is reduced to alpha*x[i] = beta
|
---|
465 | //
|
---|
466 | if( isunit )
|
---|
467 | {
|
---|
468 | alpha = sa;
|
---|
469 | }
|
---|
470 | else
|
---|
471 | {
|
---|
472 | alpha = a[i,i]*sa;
|
---|
473 | }
|
---|
474 | beta = x[i];
|
---|
475 |
|
---|
476 | //
|
---|
477 | // solve alpha*x[i] = beta
|
---|
478 | //
|
---|
479 | result = cbasicsolveandupdate(alpha, beta, lnmax, nrmb, maxgrowth, ref nrmx, ref vc);
|
---|
480 | if( !result )
|
---|
481 | {
|
---|
482 | return result;
|
---|
483 | }
|
---|
484 | x[i] = vc;
|
---|
485 |
|
---|
486 | //
|
---|
487 | // update the rest of right part
|
---|
488 | //
|
---|
489 | if( i<n-1 )
|
---|
490 | {
|
---|
491 | for(i_=i+1; i_<=n-1;i_++)
|
---|
492 | {
|
---|
493 | tmp[i_] = sa*a[i,i_];
|
---|
494 | }
|
---|
495 | for(i_=i+1; i_<=n-1;i_++)
|
---|
496 | {
|
---|
497 | x[i_] = x[i_] - vc*tmp[i_];
|
---|
498 | }
|
---|
499 | }
|
---|
500 | }
|
---|
501 | return result;
|
---|
502 | }
|
---|
503 | if( !isupper & trans==1 )
|
---|
504 | {
|
---|
505 |
|
---|
506 | //
|
---|
507 | // L^T*x = b
|
---|
508 | //
|
---|
509 | for(i=n-1; i>=0; i--)
|
---|
510 | {
|
---|
511 |
|
---|
512 | //
|
---|
513 | // Task is reduced to alpha*x[i] = beta
|
---|
514 | //
|
---|
515 | if( isunit )
|
---|
516 | {
|
---|
517 | alpha = sa;
|
---|
518 | }
|
---|
519 | else
|
---|
520 | {
|
---|
521 | alpha = a[i,i]*sa;
|
---|
522 | }
|
---|
523 | beta = x[i];
|
---|
524 |
|
---|
525 | //
|
---|
526 | // solve alpha*x[i] = beta
|
---|
527 | //
|
---|
528 | result = cbasicsolveandupdate(alpha, beta, lnmax, nrmb, maxgrowth, ref nrmx, ref vc);
|
---|
529 | if( !result )
|
---|
530 | {
|
---|
531 | return result;
|
---|
532 | }
|
---|
533 | x[i] = vc;
|
---|
534 |
|
---|
535 | //
|
---|
536 | // update the rest of right part
|
---|
537 | //
|
---|
538 | if( i>0 )
|
---|
539 | {
|
---|
540 | for(i_=0; i_<=i-1;i_++)
|
---|
541 | {
|
---|
542 | tmp[i_] = sa*a[i,i_];
|
---|
543 | }
|
---|
544 | for(i_=0; i_<=i-1;i_++)
|
---|
545 | {
|
---|
546 | x[i_] = x[i_] - vc*tmp[i_];
|
---|
547 | }
|
---|
548 | }
|
---|
549 | }
|
---|
550 | return result;
|
---|
551 | }
|
---|
552 | if( isupper & trans==2 )
|
---|
553 | {
|
---|
554 |
|
---|
555 | //
|
---|
556 | // U^H*x = b
|
---|
557 | //
|
---|
558 | for(i=0; i<=n-1; i++)
|
---|
559 | {
|
---|
560 |
|
---|
561 | //
|
---|
562 | // Task is reduced to alpha*x[i] = beta
|
---|
563 | //
|
---|
564 | if( isunit )
|
---|
565 | {
|
---|
566 | alpha = sa;
|
---|
567 | }
|
---|
568 | else
|
---|
569 | {
|
---|
570 | alpha = AP.Math.Conj(a[i,i])*sa;
|
---|
571 | }
|
---|
572 | beta = x[i];
|
---|
573 |
|
---|
574 | //
|
---|
575 | // solve alpha*x[i] = beta
|
---|
576 | //
|
---|
577 | result = cbasicsolveandupdate(alpha, beta, lnmax, nrmb, maxgrowth, ref nrmx, ref vc);
|
---|
578 | if( !result )
|
---|
579 | {
|
---|
580 | return result;
|
---|
581 | }
|
---|
582 | x[i] = vc;
|
---|
583 |
|
---|
584 | //
|
---|
585 | // update the rest of right part
|
---|
586 | //
|
---|
587 | if( i<n-1 )
|
---|
588 | {
|
---|
589 | for(i_=i+1; i_<=n-1;i_++)
|
---|
590 | {
|
---|
591 | tmp[i_] = sa*AP.Math.Conj(a[i,i_]);
|
---|
592 | }
|
---|
593 | for(i_=i+1; i_<=n-1;i_++)
|
---|
594 | {
|
---|
595 | x[i_] = x[i_] - vc*tmp[i_];
|
---|
596 | }
|
---|
597 | }
|
---|
598 | }
|
---|
599 | return result;
|
---|
600 | }
|
---|
601 | if( !isupper & trans==2 )
|
---|
602 | {
|
---|
603 |
|
---|
604 | //
|
---|
605 | // L^T*x = b
|
---|
606 | //
|
---|
607 | for(i=n-1; i>=0; i--)
|
---|
608 | {
|
---|
609 |
|
---|
610 | //
|
---|
611 | // Task is reduced to alpha*x[i] = beta
|
---|
612 | //
|
---|
613 | if( isunit )
|
---|
614 | {
|
---|
615 | alpha = sa;
|
---|
616 | }
|
---|
617 | else
|
---|
618 | {
|
---|
619 | alpha = AP.Math.Conj(a[i,i])*sa;
|
---|
620 | }
|
---|
621 | beta = x[i];
|
---|
622 |
|
---|
623 | //
|
---|
624 | // solve alpha*x[i] = beta
|
---|
625 | //
|
---|
626 | result = cbasicsolveandupdate(alpha, beta, lnmax, nrmb, maxgrowth, ref nrmx, ref vc);
|
---|
627 | if( !result )
|
---|
628 | {
|
---|
629 | return result;
|
---|
630 | }
|
---|
631 | x[i] = vc;
|
---|
632 |
|
---|
633 | //
|
---|
634 | // update the rest of right part
|
---|
635 | //
|
---|
636 | if( i>0 )
|
---|
637 | {
|
---|
638 | for(i_=0; i_<=i-1;i_++)
|
---|
639 | {
|
---|
640 | tmp[i_] = sa*AP.Math.Conj(a[i,i_]);
|
---|
641 | }
|
---|
642 | for(i_=0; i_<=i-1;i_++)
|
---|
643 | {
|
---|
644 | x[i_] = x[i_] - vc*tmp[i_];
|
---|
645 | }
|
---|
646 | }
|
---|
647 | }
|
---|
648 | return result;
|
---|
649 | }
|
---|
650 | result = false;
|
---|
651 | return result;
|
---|
652 | }
|
---|
653 |
|
---|
654 |
|
---|
655 | /*************************************************************************
|
---|
656 | complex basic solver-updater for reduced linear system
|
---|
657 |
|
---|
658 | alpha*x[i] = beta
|
---|
659 |
|
---|
660 | solves this equation and updates it in overlfow-safe manner (keeping track
|
---|
661 | of relative growth of solution).
|
---|
662 |
|
---|
663 | Parameters:
|
---|
664 | Alpha - alpha
|
---|
665 | Beta - beta
|
---|
666 | LnMax - precomputed Ln(MaxRealNumber)
|
---|
667 | BNorm - inf-norm of b (right part of original system)
|
---|
668 | MaxGrowth- maximum growth of norm(x) relative to norm(b)
|
---|
669 | XNorm - inf-norm of other components of X (which are already processed)
|
---|
670 | it is updated by CBasicSolveAndUpdate.
|
---|
671 | X - solution
|
---|
672 |
|
---|
673 | -- ALGLIB routine --
|
---|
674 | 26.01.2009
|
---|
675 | Bochkanov Sergey
|
---|
676 | *************************************************************************/
|
---|
677 | private static bool cbasicsolveandupdate(AP.Complex alpha,
|
---|
678 | AP.Complex beta,
|
---|
679 | double lnmax,
|
---|
680 | double bnorm,
|
---|
681 | double maxgrowth,
|
---|
682 | ref double xnorm,
|
---|
683 | ref AP.Complex x)
|
---|
684 | {
|
---|
685 | bool result = new bool();
|
---|
686 | double v = 0;
|
---|
687 |
|
---|
688 | result = false;
|
---|
689 | if( alpha==0 )
|
---|
690 | {
|
---|
691 | return result;
|
---|
692 | }
|
---|
693 | if( beta!=0 )
|
---|
694 | {
|
---|
695 |
|
---|
696 | //
|
---|
697 | // alpha*x[i]=beta
|
---|
698 | //
|
---|
699 | v = Math.Log(AP.Math.AbsComplex(beta))-Math.Log(AP.Math.AbsComplex(alpha));
|
---|
700 | if( (double)(v)>(double)(lnmax) )
|
---|
701 | {
|
---|
702 | return result;
|
---|
703 | }
|
---|
704 | x = beta/alpha;
|
---|
705 | }
|
---|
706 | else
|
---|
707 | {
|
---|
708 |
|
---|
709 | //
|
---|
710 | // alpha*x[i]=0
|
---|
711 | //
|
---|
712 | x = 0;
|
---|
713 | }
|
---|
714 |
|
---|
715 | //
|
---|
716 | // update NrmX, test growth limit
|
---|
717 | //
|
---|
718 | xnorm = Math.Max(xnorm, AP.Math.AbsComplex(x));
|
---|
719 | if( (double)(xnorm)>(double)(maxgrowth*bnorm) )
|
---|
720 | {
|
---|
721 | return result;
|
---|
722 | }
|
---|
723 | result = true;
|
---|
724 | return result;
|
---|
725 | }
|
---|
726 | }
|
---|
727 | }
|
---|