1 | /*************************************************************************
|
---|
2 | >>> SOURCE LICENSE >>>
|
---|
3 | This program is free software; you can redistribute it and/or modify
|
---|
4 | it under the terms of the GNU General Public License as published by
|
---|
5 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
6 | License, or (at your option) any later version.
|
---|
7 |
|
---|
8 | This program is distributed in the hope that it will be useful,
|
---|
9 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
10 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
11 | GNU General Public License for more details.
|
---|
12 |
|
---|
13 | A copy of the GNU General Public License is available at
|
---|
14 | http://www.fsf.org/licensing/licenses
|
---|
15 |
|
---|
16 | >>> END OF LICENSE >>>
|
---|
17 | *************************************************************************/
|
---|
18 |
|
---|
19 |
|
---|
20 | namespace alglib {
|
---|
21 | public class legendre {
|
---|
22 | /*************************************************************************
|
---|
23 | Calculation of the value of the Legendre polynomial Pn.
|
---|
24 |
|
---|
25 | Parameters:
|
---|
26 | n - degree, n>=0
|
---|
27 | x - argument
|
---|
28 |
|
---|
29 | Result:
|
---|
30 | the value of the Legendre polynomial Pn at x
|
---|
31 | *************************************************************************/
|
---|
32 | public static double legendrecalculate(int n,
|
---|
33 | double x) {
|
---|
34 | double result = 0;
|
---|
35 | double a = 0;
|
---|
36 | double b = 0;
|
---|
37 | int i = 0;
|
---|
38 |
|
---|
39 | result = 1;
|
---|
40 | a = 1;
|
---|
41 | b = x;
|
---|
42 | if (n == 0) {
|
---|
43 | result = a;
|
---|
44 | return result;
|
---|
45 | }
|
---|
46 | if (n == 1) {
|
---|
47 | result = b;
|
---|
48 | return result;
|
---|
49 | }
|
---|
50 | for (i = 2; i <= n; i++) {
|
---|
51 | result = ((2 * i - 1) * x * b - (i - 1) * a) / i;
|
---|
52 | a = b;
|
---|
53 | b = result;
|
---|
54 | }
|
---|
55 | return result;
|
---|
56 | }
|
---|
57 |
|
---|
58 |
|
---|
59 | /*************************************************************************
|
---|
60 | Summation of Legendre polynomials using Clenshaws recurrence formula.
|
---|
61 |
|
---|
62 | This routine calculates
|
---|
63 | c[0]*P0(x) + c[1]*P1(x) + ... + c[N]*PN(x)
|
---|
64 |
|
---|
65 | Parameters:
|
---|
66 | n - degree, n>=0
|
---|
67 | x - argument
|
---|
68 |
|
---|
69 | Result:
|
---|
70 | the value of the Legendre polynomial at x
|
---|
71 | *************************************************************************/
|
---|
72 | public static double legendresum(ref double[] c,
|
---|
73 | int n,
|
---|
74 | double x) {
|
---|
75 | double result = 0;
|
---|
76 | double b1 = 0;
|
---|
77 | double b2 = 0;
|
---|
78 | int i = 0;
|
---|
79 |
|
---|
80 | b1 = 0;
|
---|
81 | b2 = 0;
|
---|
82 | for (i = n; i >= 0; i--) {
|
---|
83 | result = (2 * i + 1) * x * b1 / (i + 1) - (i + 1) * b2 / (i + 2) + c[i];
|
---|
84 | b2 = b1;
|
---|
85 | b1 = result;
|
---|
86 | }
|
---|
87 | return result;
|
---|
88 | }
|
---|
89 |
|
---|
90 |
|
---|
91 | /*************************************************************************
|
---|
92 | Representation of Pn as C[0] + C[1]*X + ... + C[N]*X^N
|
---|
93 |
|
---|
94 | Input parameters:
|
---|
95 | N - polynomial degree, n>=0
|
---|
96 |
|
---|
97 | Output parameters:
|
---|
98 | C - coefficients
|
---|
99 | *************************************************************************/
|
---|
100 | public static void legendrecoefficients(int n,
|
---|
101 | ref double[] c) {
|
---|
102 | int i = 0;
|
---|
103 |
|
---|
104 | c = new double[n + 1];
|
---|
105 | for (i = 0; i <= n; i++) {
|
---|
106 | c[i] = 0;
|
---|
107 | }
|
---|
108 | c[n] = 1;
|
---|
109 | for (i = 1; i <= n; i++) {
|
---|
110 | c[n] = c[n] * (n + i) / 2 / i;
|
---|
111 | }
|
---|
112 | for (i = 0; i <= n / 2 - 1; i++) {
|
---|
113 | c[n - 2 * (i + 1)] = -(c[n - 2 * i] * (n - 2 * i) * (n - 2 * i - 1) / 2 / (i + 1) / (2 * (n - i) - 1));
|
---|
114 | }
|
---|
115 | }
|
---|
116 | }
|
---|
117 | }
|
---|