1 | /*************************************************************************
|
---|
2 | Cephes Math Library Release 2.8: June, 2000
|
---|
3 | Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
---|
4 |
|
---|
5 | Contributors:
|
---|
6 | * Sergey Bochkanov (ALGLIB project). Translation from C to
|
---|
7 | pseudocode.
|
---|
8 |
|
---|
9 | See subroutines comments for additional copyrights.
|
---|
10 |
|
---|
11 | >>> SOURCE LICENSE >>>
|
---|
12 | This program is free software; you can redistribute it and/or modify
|
---|
13 | it under the terms of the GNU General Public License as published by
|
---|
14 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
15 | License, or (at your option) any later version.
|
---|
16 |
|
---|
17 | This program is distributed in the hope that it will be useful,
|
---|
18 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
19 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
20 | GNU General Public License for more details.
|
---|
21 |
|
---|
22 | A copy of the GNU General Public License is available at
|
---|
23 | http://www.fsf.org/licensing/licenses
|
---|
24 |
|
---|
25 | >>> END OF LICENSE >>>
|
---|
26 | *************************************************************************/
|
---|
27 |
|
---|
28 |
|
---|
29 | namespace alglib {
|
---|
30 | public class chisquaredistr {
|
---|
31 | /*************************************************************************
|
---|
32 | Chi-square distribution
|
---|
33 |
|
---|
34 | Returns the area under the left hand tail (from 0 to x)
|
---|
35 | of the Chi square probability density function with
|
---|
36 | v degrees of freedom.
|
---|
37 |
|
---|
38 |
|
---|
39 | x
|
---|
40 | -
|
---|
41 | 1 | | v/2-1 -t/2
|
---|
42 | P( x | v ) = ----------- | t e dt
|
---|
43 | v/2 - | |
|
---|
44 | 2 | (v/2) -
|
---|
45 | 0
|
---|
46 |
|
---|
47 | where x is the Chi-square variable.
|
---|
48 |
|
---|
49 | The incomplete gamma integral is used, according to the
|
---|
50 | formula
|
---|
51 |
|
---|
52 | y = chdtr( v, x ) = igam( v/2.0, x/2.0 ).
|
---|
53 |
|
---|
54 | The arguments must both be positive.
|
---|
55 |
|
---|
56 | ACCURACY:
|
---|
57 |
|
---|
58 | See incomplete gamma function
|
---|
59 |
|
---|
60 |
|
---|
61 | Cephes Math Library Release 2.8: June, 2000
|
---|
62 | Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
---|
63 | *************************************************************************/
|
---|
64 | public static double chisquaredistribution(double v,
|
---|
65 | double x) {
|
---|
66 | double result = 0;
|
---|
67 |
|
---|
68 | System.Diagnostics.Debug.Assert((double)(x) >= (double)(0) & (double)(v) >= (double)(1), "Domain error in ChiSquareDistribution");
|
---|
69 | result = igammaf.incompletegamma(v / 2.0, x / 2.0);
|
---|
70 | return result;
|
---|
71 | }
|
---|
72 |
|
---|
73 |
|
---|
74 | /*************************************************************************
|
---|
75 | Complemented Chi-square distribution
|
---|
76 |
|
---|
77 | Returns the area under the right hand tail (from x to
|
---|
78 | infinity) of the Chi square probability density function
|
---|
79 | with v degrees of freedom:
|
---|
80 |
|
---|
81 | inf.
|
---|
82 | -
|
---|
83 | 1 | | v/2-1 -t/2
|
---|
84 | P( x | v ) = ----------- | t e dt
|
---|
85 | v/2 - | |
|
---|
86 | 2 | (v/2) -
|
---|
87 | x
|
---|
88 |
|
---|
89 | where x is the Chi-square variable.
|
---|
90 |
|
---|
91 | The incomplete gamma integral is used, according to the
|
---|
92 | formula
|
---|
93 |
|
---|
94 | y = chdtr( v, x ) = igamc( v/2.0, x/2.0 ).
|
---|
95 |
|
---|
96 | The arguments must both be positive.
|
---|
97 |
|
---|
98 | ACCURACY:
|
---|
99 |
|
---|
100 | See incomplete gamma function
|
---|
101 |
|
---|
102 | Cephes Math Library Release 2.8: June, 2000
|
---|
103 | Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
---|
104 | *************************************************************************/
|
---|
105 | public static double chisquarecdistribution(double v,
|
---|
106 | double x) {
|
---|
107 | double result = 0;
|
---|
108 |
|
---|
109 | System.Diagnostics.Debug.Assert((double)(x) >= (double)(0) & (double)(v) >= (double)(1), "Domain error in ChiSquareDistributionC");
|
---|
110 | result = igammaf.incompletegammac(v / 2.0, x / 2.0);
|
---|
111 | return result;
|
---|
112 | }
|
---|
113 |
|
---|
114 |
|
---|
115 | /*************************************************************************
|
---|
116 | Inverse of complemented Chi-square distribution
|
---|
117 |
|
---|
118 | Finds the Chi-square argument x such that the integral
|
---|
119 | from x to infinity of the Chi-square density is equal
|
---|
120 | to the given cumulative probability y.
|
---|
121 |
|
---|
122 | This is accomplished using the inverse gamma integral
|
---|
123 | function and the relation
|
---|
124 |
|
---|
125 | x/2 = igami( df/2, y );
|
---|
126 |
|
---|
127 | ACCURACY:
|
---|
128 |
|
---|
129 | See inverse incomplete gamma function
|
---|
130 |
|
---|
131 |
|
---|
132 | Cephes Math Library Release 2.8: June, 2000
|
---|
133 | Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
---|
134 | *************************************************************************/
|
---|
135 | public static double invchisquaredistribution(double v,
|
---|
136 | double y) {
|
---|
137 | double result = 0;
|
---|
138 |
|
---|
139 | System.Diagnostics.Debug.Assert((double)(y) >= (double)(0) & (double)(y) <= (double)(1) & (double)(v) >= (double)(1), "Domain error in InvChiSquareDistribution");
|
---|
140 | result = 2 * igammaf.invincompletegammac(0.5 * v, y);
|
---|
141 | return result;
|
---|
142 | }
|
---|
143 | }
|
---|
144 | }
|
---|