Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HLScript/HeuristicLab.Problems.QuadraticAssignment/3.3/LocalImprovement/QAPExhaustiveSwap2LocalImprovement.cs @ 12675

Last change on this file since 12675 was 9456, checked in by swagner, 12 years ago

Updated copyright year and added some missing license headers (#1889)

File size: 10.5 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Threading;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using HeuristicLab.Encodings.PermutationEncoding;
28using HeuristicLab.Operators;
29using HeuristicLab.Optimization;
30using HeuristicLab.Parameters;
31using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
32
33namespace HeuristicLab.Problems.QuadraticAssignment {
34  [Item("QAPExhaustiveSwap2LocalImprovement", "Takes a solution and finds the local optimum with respect to the swap2 neighborhood by decending along the steepest gradient.")]
35  [StorableClass]
36  public class QAPExhaustiveSwap2LocalImprovement : SingleSuccessorOperator, ILocalImprovementOperator {
37
38    public Type ProblemType {
39      get { return typeof(QuadraticAssignmentProblem); }
40    }
41
42    [Storable]
43    private QuadraticAssignmentProblem problem;
44    public IProblem Problem {
45      get { return problem; }
46      set { problem = (QuadraticAssignmentProblem)value; }
47    }
48
49    public ILookupParameter<IntValue> LocalIterationsParameter {
50      get { return (ILookupParameter<IntValue>)Parameters["LocalIterations"]; }
51    }
52
53    public IValueLookupParameter<IntValue> MaximumIterationsParameter {
54      get { return (IValueLookupParameter<IntValue>)Parameters["MaximumIterations"]; }
55    }
56
57    public ILookupParameter<IntValue> EvaluatedSolutionsParameter {
58      get { return (ILookupParameter<IntValue>)Parameters["EvaluatedSolutions"]; }
59    }
60
61    public ILookupParameter<ResultCollection> ResultsParameter {
62      get { return (ILookupParameter<ResultCollection>)Parameters["Results"]; }
63    }
64
65    public ILookupParameter<Permutation> AssignmentParameter {
66      get { return (ILookupParameter<Permutation>)Parameters["Assignment"]; }
67    }
68
69    public ILookupParameter<DoubleValue> QualityParameter {
70      get { return (ILookupParameter<DoubleValue>)Parameters["Quality"]; }
71    }
72
73    public ILookupParameter<BoolValue> MaximizationParameter {
74      get { return (ILookupParameter<BoolValue>)Parameters["Maximization"]; }
75    }
76
77    public ILookupParameter<DoubleMatrix> WeightsParameter {
78      get { return (ILookupParameter<DoubleMatrix>)Parameters["Weights"]; }
79    }
80
81    public ILookupParameter<DoubleMatrix> DistancesParameter {
82      get { return (ILookupParameter<DoubleMatrix>)Parameters["Distances"]; }
83    }
84
85    public IValueLookupParameter<BoolValue> UseFastEvaluationParameter {
86      get { return (IValueLookupParameter<BoolValue>)Parameters["UseFastEvaluation"]; }
87    }
88
89    [StorableConstructor]
90    protected QAPExhaustiveSwap2LocalImprovement(bool deserializing) : base(deserializing) { }
91    protected QAPExhaustiveSwap2LocalImprovement(QAPExhaustiveSwap2LocalImprovement original, Cloner cloner)
92      : base(original, cloner) {
93      this.problem = cloner.Clone(original.problem);
94    }
95    public QAPExhaustiveSwap2LocalImprovement()
96      : base() {
97      Parameters.Add(new LookupParameter<IntValue>("LocalIterations", "The number of iterations that have already been performed."));
98      Parameters.Add(new ValueLookupParameter<IntValue>("MaximumIterations", "The maximum amount of iterations that should be performed (note that this operator will abort earlier when a local optimum is reached).", new IntValue(10000)));
99      Parameters.Add(new LookupParameter<IntValue>("EvaluatedSolutions", "The amount of evaluated solutions (here a move is counted only as 4/n evaluated solutions with n being the length of the permutation)."));
100      Parameters.Add(new LookupParameter<ResultCollection>("Results", "The collection where to store results."));
101      Parameters.Add(new LookupParameter<Permutation>("Assignment", "The permutation that is to be locally optimized."));
102      Parameters.Add(new LookupParameter<DoubleValue>("Quality", "The quality value of the assignment."));
103      Parameters.Add(new LookupParameter<BoolValue>("Maximization", "True if the problem should be maximized or minimized."));
104      Parameters.Add(new LookupParameter<DoubleMatrix>("Weights", "The weights matrix."));
105      Parameters.Add(new LookupParameter<DoubleMatrix>("Distances", "The distances matrix."));
106      Parameters.Add(new ValueLookupParameter<BoolValue>("UseFastEvaluation", "Enabling this option will use a NxN double matrix to save the last move qualities. The moves of the first iteration will then be evaluated in O(N) while all further moves will be evaluated in O(1).", new BoolValue(true)));
107    }
108
109    public override IDeepCloneable Clone(Cloner cloner) {
110      return new QAPExhaustiveSwap2LocalImprovement(this, cloner);
111    }
112
113    // BackwardsCompatibility3.3
114    #region Backwards compatible code, remove with 3.4
115    [StorableHook(HookType.AfterDeserialization)]
116    private void AfterDeserialization() {
117      if (!Parameters.ContainsKey("LocalIterations"))
118        Parameters.Add(new LookupParameter<IntValue>("LocalIterations", "The number of iterations that have already been performed."));
119      if (!Parameters.ContainsKey("UseFastEvaluation"))
120        Parameters.Add(new ValueLookupParameter<BoolValue>("UseFastEvaluation", "Enabling this option will use a NxN double matrix to save the last move qualities. The moves of the first iteration will then be evaluated in O(N) while all further moves will be evaluated in O(1).", new BoolValue(false)));
121    }
122    #endregion
123
124    public static void Improve(Permutation assignment, DoubleMatrix weights, DoubleMatrix distances, DoubleValue quality, IntValue localIterations, IntValue evaluatedSolutions, bool maximization, int maxIterations, CancellationToken cancellation) {
125      double evalSolPerMove = 4.0 / assignment.Length;
126
127      for (int i = localIterations.Value; i < maxIterations; i++) {
128        Swap2Move bestMove = null;
129        double bestQuality = 0; // we have to make an improvement, so 0 is the baseline
130        double evaluations = 0.0;
131        foreach (Swap2Move move in ExhaustiveSwap2MoveGenerator.Generate(assignment)) {
132          double moveQuality = QAPSwap2MoveEvaluator.Apply(assignment, move, weights, distances);
133          evaluations += evalSolPerMove;
134          if (maximization && moveQuality > bestQuality
135            || !maximization && moveQuality < bestQuality) {
136            bestQuality = moveQuality;
137            bestMove = move;
138          }
139        }
140        evaluatedSolutions.Value += (int)Math.Ceiling(evaluations);
141        if (bestMove == null) break;
142        Swap2Manipulator.Apply(assignment, bestMove.Index1, bestMove.Index2);
143        quality.Value += bestQuality;
144        localIterations.Value++;
145        cancellation.ThrowIfCancellationRequested();
146      }
147    }
148
149    public static void ImproveFast(Permutation assignment, DoubleMatrix weights, DoubleMatrix distances, DoubleValue quality, IntValue localIterations, IntValue evaluatedSolutions, bool maximization, int maxIterations, CancellationToken cancellation) {
150      Swap2Move bestMove = null;
151      double evaluations = 0.0;
152      var lastQuality = new double[assignment.Length, assignment.Length];
153      for (int i = localIterations.Value; i < maxIterations; i++) {
154        double bestQuality = 0; // we have to make an improvement, so 0 is the baseline
155        var lastMove = bestMove;
156        bestMove = null;
157        foreach (Swap2Move move in ExhaustiveSwap2MoveGenerator.Generate(assignment)) {
158          double moveQuality;
159          if (lastMove == null) {
160            moveQuality = QAPSwap2MoveEvaluator.Apply(assignment, move, weights, distances);
161            evaluations += 4.0 / assignment.Length;
162          } else {
163            moveQuality = QAPSwap2MoveEvaluator.Apply(assignment, move, lastQuality[move.Index1, move.Index2], weights, distances, lastMove);
164            if (move.Index1 == lastMove.Index1 || move.Index2 == lastMove.Index1 || move.Index1 == lastMove.Index2 || move.Index2 == lastMove.Index2)
165              evaluations += 4.0 / assignment.Length;
166            else evaluations += 2.0 / (assignment.Length * assignment.Length);
167          }
168          lastQuality[move.Index1, move.Index2] = moveQuality;
169          if (maximization && moveQuality > bestQuality
170            || !maximization && moveQuality < bestQuality) {
171            bestQuality = moveQuality;
172            bestMove = move;
173          }
174        }
175        if (bestMove == null) break;
176        Swap2Manipulator.Apply(assignment, bestMove.Index1, bestMove.Index2);
177        quality.Value += bestQuality;
178        localIterations.Value++;
179        if (cancellation.IsCancellationRequested) {
180          evaluatedSolutions.Value += (int)Math.Round(evaluations);
181          throw new OperationCanceledException();
182        }
183      }
184      evaluatedSolutions.Value += (int)Math.Round(evaluations);
185    }
186
187    public override IOperation Apply() {
188      var maxIterations = MaximumIterationsParameter.ActualValue.Value;
189      var assignment = AssignmentParameter.ActualValue;
190      var maximization = MaximizationParameter.ActualValue.Value;
191      var weights = WeightsParameter.ActualValue;
192      var distances = DistancesParameter.ActualValue;
193      var quality = QualityParameter.ActualValue;
194      var localIterations = LocalIterationsParameter.ActualValue;
195      var evaluations = EvaluatedSolutionsParameter.ActualValue;
196      if (localIterations == null) {
197        localIterations = new IntValue(0);
198        LocalIterationsParameter.ActualValue = localIterations;
199      }
200
201      if (UseFastEvaluationParameter.ActualValue.Value)
202        ImproveFast(assignment, weights, distances, quality, localIterations, evaluations, maximization, maxIterations, CancellationToken);
203      else Improve(assignment, weights, distances, quality, localIterations, evaluations, maximization, maxIterations, CancellationToken);
204
205      localIterations.Value = 0;
206      return base.Apply();
207    }
208  }
209}
Note: See TracBrowser for help on using the repository browser.