Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HL-3.2-MonoMigration/HeuristicLab.StructureIdentification/Recombination/OnePointCrossOver.cs @ 2031

Last change on this file since 2031 was 618, checked in by gkronber, 16 years ago
  • improved SizeFairCrossOver
  • implemented very simple and strict form of a homologous crossover operator

(ticket #108)

File size: 7.6 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Text;
26using HeuristicLab.Core;
27using HeuristicLab.Operators;
28using HeuristicLab.Random;
29using HeuristicLab.Data;
30using HeuristicLab.Constraints;
31using HeuristicLab.Functions;
32using System.Diagnostics;
33
34namespace HeuristicLab.StructureIdentification {
35  /// <summary>
36  /// Implementation of a homologous one point crossover operator as described in:
37  /// W. B. Langdon and R. Poli.  Foundations of Genetic Programming. Springer-Verlag, 2002.
38  /// </summary>
39  public class OnePointCrossOver : OperatorBase {
40    public override string Description {
41      get {
42        return @"";
43      }
44    }
45    public OnePointCrossOver()
46      : base() {
47      AddVariableInfo(new VariableInfo("Random", "Pseudo random number generator", typeof(MersenneTwister), VariableKind.In));
48      AddVariableInfo(new VariableInfo("OperatorLibrary", "The operator library containing all available operators", typeof(GPOperatorLibrary), VariableKind.In));
49      AddVariableInfo(new VariableInfo("MaxTreeHeight", "The maximal allowed height of the tree", typeof(IntData), VariableKind.In));
50      AddVariableInfo(new VariableInfo("MaxTreeSize", "The maximal allowed size (number of nodes) of the tree", typeof(IntData), VariableKind.In));
51      AddVariableInfo(new VariableInfo("FunctionTree", "The tree to mutate", typeof(IFunctionTree), VariableKind.In | VariableKind.New));
52      AddVariableInfo(new VariableInfo("TreeSize", "The size (number of nodes) of the tree", typeof(IntData), VariableKind.New));
53      AddVariableInfo(new VariableInfo("TreeHeight", "The height of the tree", typeof(IntData), VariableKind.New));
54    }
55
56    public override IOperation Apply(IScope scope) {
57      MersenneTwister random = GetVariableValue<MersenneTwister>("Random", scope, true);
58      GPOperatorLibrary opLibrary = GetVariableValue<GPOperatorLibrary>("OperatorLibrary", scope, true);
59      int maxTreeHeight = GetVariableValue<IntData>("MaxTreeHeight", scope, true).Data;
60      int maxTreeSize = GetVariableValue<IntData>("MaxTreeSize", scope, true).Data;
61
62      TreeGardener gardener = new TreeGardener(random, opLibrary);
63
64      if((scope.SubScopes.Count % 2) != 0)
65        throw new InvalidOperationException("Number of parents is not even");
66
67      CompositeOperation initOperations = new CompositeOperation();
68
69      int children = scope.SubScopes.Count / 2;
70      for(int i = 0; i < children; i++) {
71        IScope parent1 = scope.SubScopes[0];
72        scope.RemoveSubScope(parent1);
73        IScope parent2 = scope.SubScopes[0];
74        scope.RemoveSubScope(parent2);
75        IScope child = new Scope(i.ToString());
76        IOperation childInitOperation = Cross(gardener, maxTreeSize, maxTreeHeight, scope, random, parent1, parent2, child);
77        initOperations.AddOperation(childInitOperation);
78        scope.AddSubScope(child);
79      }
80
81      return initOperations;
82    }
83
84    private IOperation Cross(TreeGardener gardener, int maxTreeSize, int maxTreeHeight,
85      IScope scope, MersenneTwister random, IScope parent1, IScope parent2, IScope child) {
86      IFunctionTree newTree = Cross(gardener, parent1, parent2,
87        random, maxTreeSize, maxTreeHeight);
88
89      int newTreeSize = newTree.Size;
90      int newTreeHeight = newTree.Height;
91      child.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("FunctionTree"), newTree));
92      child.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TreeSize"), new IntData(newTreeSize)));
93      child.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TreeHeight"), new IntData(newTreeHeight)));
94
95      // check if the new tree is valid and if the height of is still in the allowed bounds (we are not so strict for the max-size)
96      Debug.Assert(gardener.IsValidTree(newTree) && newTreeHeight <= maxTreeHeight && newTreeSize <= maxTreeSize);
97      return null;
98    }
99
100
101    private IFunctionTree Cross(TreeGardener gardener, IScope f, IScope g, MersenneTwister random, int maxTreeSize, int maxTreeHeight) {
102      IFunctionTree tree0 = f.GetVariableValue<IFunctionTree>("FunctionTree", false);
103      int tree0Height = f.GetVariableValue<IntData>("TreeHeight", false).Data;
104      int tree0Size = f.GetVariableValue<IntData>("TreeSize", false).Data;
105
106      IFunctionTree tree1 = g.GetVariableValue<IFunctionTree>("FunctionTree", false);
107      int tree1Height = g.GetVariableValue<IntData>("TreeHeight", false).Data;
108      int tree1Size = g.GetVariableValue<IntData>("TreeSize", false).Data;
109
110      if(tree0Size == 1 && tree1Size == 1) {
111        return CombineTerminals(gardener, tree0, tree1, random);
112      } else {
113        // we are going to insert tree1 into tree0 at a random place so we have to make sure that tree0 is not a terminal
114        // in case both trees are higher than 1 we swap the trees with probability 50%
115        if(tree0Height == 1 || (tree1Height > 1 && random.Next(2) == 0)) {
116          IFunctionTree tmp = tree0; tree0 = tree1; tree1 = tmp;
117          int tmpHeight = tree0Height; tree0Height = tree1Height; tree1Height = tmpHeight;
118          int tmpSize = tree0Size; tree0Size = tree1Size; tree1Size = tmpSize;
119        }
120
121        List<IFunctionTree[]> allowedCrossOverPoints = GetCrossOverPoints(null, tree0, tree1);
122        if(allowedCrossOverPoints.Count == 0) {
123          if(random.NextDouble() < 0.5) return tree0; else return tree1;
124        }
125        IFunctionTree[] crossOverPoints = allowedCrossOverPoints[random.Next(allowedCrossOverPoints.Count)];
126        IFunctionTree parent = crossOverPoints[0];
127        IFunctionTree replacedBranch = crossOverPoints[1];
128        IFunctionTree insertedBranch = crossOverPoints[2];
129        if(parent == null) return insertedBranch;
130        else {
131          int i = 0;
132          while(parent.SubTrees[i] != replacedBranch) i++;
133          parent.RemoveSubTree(i);
134          parent.InsertSubTree(i, insertedBranch);
135          return tree0;
136        }
137      }
138    }
139
140    private List<IFunctionTree[]> GetCrossOverPoints(IFunctionTree parent, IFunctionTree tree0, IFunctionTree tree1) {
141      List<IFunctionTree[]> results = new List<IFunctionTree[]>();
142      if(tree0.Function != tree1.Function) return results;
143
144      int maxArity = Math.Min(tree0.SubTrees.Count, tree1.SubTrees.Count);
145      for(int i = 0; i < maxArity; i++) {
146        results.AddRange(GetCrossOverPoints(tree0, tree0.SubTrees[i], tree1.SubTrees[i]));
147      }
148      if(results.Count == 0) results.Add(new IFunctionTree[] { parent, tree0, tree1 });
149      return results;
150    }
151
152    private IFunctionTree CombineTerminals(TreeGardener gardener, IFunctionTree f, IFunctionTree g, MersenneTwister random) {
153      if(random.NextDouble() < 0.5) return f; else return g;
154    }
155  }
156}
Note: See TracBrowser for help on using the repository browser.