Free cookie consent management tool by TermsFeed Policy Generator

source: branches/GrammaticalEvolution/HeuristicLab.Problems.GrammaticalEvolution/Symbolic/GESymbolicRegressionSingleObjectiveProblem.cs @ 10153

Last change on this file since 10153 was 10075, checked in by sawinkle, 11 years ago

#2109:

  • For each newly created node, ResetLocalParameters() has to be called, if possible. Otherwise 'Variable' symbols won't be initialized correctly. (E.g. internal ValueName is null and causes exceptions.)
  • Method MapDepthFirstRecursively() of DepthFirstMapper.cs checks subtree boundaries by using the MinimumArity instead of the MaximumArity. Otherwise e.g. adding the 'Addition' symbol will cause very short trees, because this symbol has got a MaximumArity of 255! This would cause, that the tree is immediately full, after insertion of one 'Addition' symbol, if the genotype length is e.g. just 100.
  • Several bug fixes.
  • Unresolved issues:
    • Changes in the selected grammar are not taken into account during a run (e.g. 'Addition' symbols will be inserted into the tree, although its checkbox was unchecked previously).
    • Exception, if a division by zero is tried.
    • Wrapping mechanism.
File size: 6.5 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Linq;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Encodings.IntegerVectorEncoding;
26using HeuristicLab.Parameters;
27using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
28using HeuristicLab.Problems.DataAnalysis;
29using HeuristicLab.Problems.DataAnalysis.Symbolic;
30using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
31
32namespace HeuristicLab.Problems.GrammaticalEvolution {
33  [Item("Grammatical Evolution Symbolic Regression Problem (single objective)", "Represents a single objective symbolic regression problem, implemented in Grammatical Evolution.")]
34  [StorableClass]
35  [Creatable("Problems")]
36  public class GESymbolicRegressionSingleObjectiveProblem : GESymbolicDataAnalysisSingleObjectiveProblem<IRegressionProblemData, IGESymbolicRegressionSingleObjectiveEvaluator, IIntegerVectorCreator>,
37                                                            IRegressionProblem {
38    private const double PunishmentFactor = 10;
39    private const int InitialMaximumTreeDepth = 8;
40    private const int InitialMaximumTreeLength = 25;
41    private const string EstimationLimitsParameterName = "EstimationLimits";
42    private const string EstimationLimitsParameterDescription = "The limits for the estimated value that can be returned by the symbolic regression model.";
43
44    #region parameter properties
45    public IFixedValueParameter<DoubleLimit> EstimationLimitsParameter {
46      get { return (IFixedValueParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
47    }
48    #endregion
49    #region properties
50    public DoubleLimit EstimationLimits {
51      get { return EstimationLimitsParameter.Value; }
52    }
53    #endregion
54    [StorableConstructor]
55    protected GESymbolicRegressionSingleObjectiveProblem(bool deserializing) : base(deserializing) { }
56    protected GESymbolicRegressionSingleObjectiveProblem(GESymbolicRegressionSingleObjectiveProblem original, Cloner cloner)
57      : base(original, cloner) {
58      RegisterEventHandlers();
59    }
60    public override IDeepCloneable Clone(Cloner cloner) { return new GESymbolicRegressionSingleObjectiveProblem(this, cloner); }
61
62    public GESymbolicRegressionSingleObjectiveProblem()
63      : base(new RegressionProblemData(), new GESymbolicRegressionSingleObjectivePearsonRSquaredEvaluator(), new UniformRandomIntegerVectorCreator()) {
64      Parameters.Add(new FixedValueParameter<DoubleLimit>(EstimationLimitsParameterName, EstimationLimitsParameterDescription));
65
66      EstimationLimitsParameter.Hidden = true;
67
68
69      ApplyLinearScalingParameter.Value.Value = true;
70      Maximization.Value = true;
71      MaximumSymbolicExpressionTreeDepth.Value = InitialMaximumTreeDepth;
72      MaximumSymbolicExpressionTreeLength.Value = InitialMaximumTreeLength;
73
74      RegisterEventHandlers();
75      ConfigureGrammarSymbols();
76      InitializeOperators();
77      UpdateEstimationLimits();
78    }
79
80    [StorableHook(HookType.AfterDeserialization)]
81    private void AfterDeserialization() {
82      RegisterEventHandlers();
83      // compatibility
84      bool changed = false;
85      if (!Operators.OfType<SymbolicRegressionSingleObjectiveTrainingParetoBestSolutionAnalyzer>().Any()) {
86        Operators.Add(new SymbolicRegressionSingleObjectiveTrainingParetoBestSolutionAnalyzer());
87        changed = true;
88      }
89      if (!Operators.OfType<SymbolicRegressionSingleObjectiveValidationParetoBestSolutionAnalyzer>().Any()) {
90        Operators.Add(new SymbolicRegressionSingleObjectiveValidationParetoBestSolutionAnalyzer());
91        changed = true;
92      }
93      if (changed) {
94        ParameterizeOperators();
95      }
96    }
97
98    private void RegisterEventHandlers() {
99      SymbolicExpressionTreeGrammarParameter.ValueChanged += (o, e) => ConfigureGrammarSymbols();
100    }
101
102    private void ConfigureGrammarSymbols() {
103      var grammar = SymbolicExpressionTreeGrammar as TypeCoherentExpressionGrammar;
104      if (grammar != null) grammar.ConfigureAsDefaultRegressionGrammar();
105    }
106
107    private void InitializeOperators() {
108      Operators.Add(new SymbolicRegressionSingleObjectiveTrainingBestSolutionAnalyzer());
109      Operators.Add(new SymbolicRegressionSingleObjectiveValidationBestSolutionAnalyzer());
110      Operators.Add(new SymbolicRegressionSingleObjectiveOverfittingAnalyzer());
111      Operators.Add(new SymbolicRegressionSingleObjectiveTrainingParetoBestSolutionAnalyzer());
112      Operators.Add(new SymbolicRegressionSingleObjectiveValidationParetoBestSolutionAnalyzer());
113
114      ParameterizeOperators();
115    }
116
117    private void UpdateEstimationLimits() {
118      if (ProblemData.TrainingIndices.Any()) {
119        var targetValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).ToList();
120        var mean = targetValues.Average();
121        var range = targetValues.Max() - targetValues.Min();
122        EstimationLimits.Upper = mean + PunishmentFactor * range;
123        EstimationLimits.Lower = mean - PunishmentFactor * range;
124      } else {
125        EstimationLimits.Upper = double.MaxValue;
126        EstimationLimits.Lower = double.MinValue;
127      }
128    }
129
130    protected override void OnProblemDataChanged() {
131      base.OnProblemDataChanged();
132      UpdateEstimationLimits();
133    }
134
135    protected override void ParameterizeOperators() {
136      base.ParameterizeOperators();
137      if (Parameters.ContainsKey(EstimationLimitsParameterName)) {
138        var operators = Parameters.OfType<IValueParameter>().Select(p => p.Value).OfType<IOperator>().Union(Operators);
139        foreach (var op in operators.OfType<ISymbolicDataAnalysisBoundedOperator>()) {
140          op.EstimationLimitsParameter.ActualName = EstimationLimitsParameter.Name;
141        }
142      }
143    }
144  }
145}
Note: See TracBrowser for help on using the repository browser.