1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
29 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Problems.GrammaticalEvolution {
|
---|
32 | [Item("Pearson R² Evaluator", "Calculates the square of the pearson correlation coefficient (also known as coefficient of determination) of a symbolic regression solution.")]
|
---|
33 | [StorableClass]
|
---|
34 | public class GESymbolicRegressionSingleObjectivePearsonRSquaredEvaluator : GESymbolicRegressionSingleObjectiveEvaluator {
|
---|
35 | [StorableConstructor]
|
---|
36 | protected GESymbolicRegressionSingleObjectivePearsonRSquaredEvaluator(bool deserializing) : base(deserializing) { }
|
---|
37 | protected GESymbolicRegressionSingleObjectivePearsonRSquaredEvaluator(GESymbolicRegressionSingleObjectivePearsonRSquaredEvaluator original, Cloner cloner)
|
---|
38 | : base(original, cloner) {
|
---|
39 | }
|
---|
40 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
41 | return new GESymbolicRegressionSingleObjectivePearsonRSquaredEvaluator(this, cloner);
|
---|
42 | }
|
---|
43 |
|
---|
44 | public GESymbolicRegressionSingleObjectivePearsonRSquaredEvaluator() : base() { }
|
---|
45 |
|
---|
46 | public override bool Maximization { get { return true; } }
|
---|
47 |
|
---|
48 | public override IOperation Apply() {
|
---|
49 | var solution = GenotypeToPhenotypeMapperParameter.ActualValue.Map(
|
---|
50 | SymbolicExpressionTreeGrammarParameter.ActualValue,
|
---|
51 | IntegerVectorParameter.ActualValue
|
---|
52 | );
|
---|
53 | SymbolicExpressionTreeParameter.ActualValue = solution;
|
---|
54 | IEnumerable<int> rows = GenerateRowsToEvaluate();
|
---|
55 |
|
---|
56 | double quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue,
|
---|
57 | solution, EstimationLimitsParameter.ActualValue.Lower,
|
---|
58 | EstimationLimitsParameter.ActualValue.Upper,
|
---|
59 | ProblemDataParameter.ActualValue, rows,
|
---|
60 | ApplyLinearScalingParameter.ActualValue.Value);
|
---|
61 | QualityParameter.ActualValue = new DoubleValue(quality);
|
---|
62 |
|
---|
63 | return base.Apply();
|
---|
64 | }
|
---|
65 |
|
---|
66 | public static double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
|
---|
67 | ISymbolicExpressionTree solution,
|
---|
68 | double lowerEstimationLimit, double upperEstimationLimit,
|
---|
69 | IRegressionProblemData problemData,
|
---|
70 | IEnumerable<int> rows, bool applyLinearScaling) {
|
---|
71 | IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows);
|
---|
72 | IEnumerable<double> targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
|
---|
73 | OnlineCalculatorError errorState;
|
---|
74 |
|
---|
75 | double r2;
|
---|
76 | if (applyLinearScaling) {
|
---|
77 | var r2Calculator = new OnlinePearsonsRSquaredCalculator();
|
---|
78 | CalculateWithScaling(targetValues, estimatedValues, lowerEstimationLimit, upperEstimationLimit, r2Calculator, problemData.Dataset.Rows);
|
---|
79 | errorState = r2Calculator.ErrorState;
|
---|
80 | r2 = r2Calculator.RSquared;
|
---|
81 | } else {
|
---|
82 | IEnumerable<double> boundedEstimatedValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);
|
---|
83 | r2 = OnlinePearsonsRSquaredCalculator.Calculate(targetValues, boundedEstimatedValues, out errorState);
|
---|
84 | }
|
---|
85 | if (errorState != OnlineCalculatorError.None) return double.NaN;
|
---|
86 | return r2;
|
---|
87 | }
|
---|
88 |
|
---|
89 | public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree,
|
---|
90 | IRegressionProblemData problemData, IEnumerable<int> rows) {
|
---|
91 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
|
---|
92 | EstimationLimitsParameter.ExecutionContext = context;
|
---|
93 | ApplyLinearScalingParameter.ExecutionContext = context;
|
---|
94 |
|
---|
95 | double r2 = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue,
|
---|
96 | tree, EstimationLimitsParameter.ActualValue.Lower,
|
---|
97 | EstimationLimitsParameter.ActualValue.Upper,
|
---|
98 | problemData, rows,
|
---|
99 | ApplyLinearScalingParameter.ActualValue.Value);
|
---|
100 |
|
---|
101 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
|
---|
102 | EstimationLimitsParameter.ExecutionContext = null;
|
---|
103 | ApplyLinearScalingParameter.ExecutionContext = null;
|
---|
104 |
|
---|
105 | return r2;
|
---|
106 | }
|
---|
107 | }
|
---|
108 | }
|
---|