Free cookie consent management tool by TermsFeed Policy Generator

source: branches/GrammaticalEvolution/HeuristicLab.Problems.GrammaticalEvolution/Symbolic/GESymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.cs @ 10189

Last change on this file since 10189 was 10073, checked in by sawinkle, 11 years ago

#2109:

  • Renamed all identifiers within the files to include 'GE', where necessary.
  • Changed the namespaces of all files to 'HeuristicLab.Problems.GrammaticalEvolution'.
  • Added the parameters IntegerVector, GenotypeToPhenotype and SymbolicExpressionTreeGrammar to the Evaluator classes, where necessary.
  • Changed the SolutionCreator from ISymbolicDataAnalysisSolutionCreator to IIntegerVectorCreator; changed the Evaluator from ISymbolicDataAnalysisEvaluator<T> to IGESymbolicDataAnalysisEvaluator<T>; the problem data class/interface IDataAnalysisProblemData stays the same.
  • The methods Evaluate() and Calculate() of the specific Evaluators won't change -> the genotype-to-phenotype mapping process is done within the Apply() method.
File size: 5.4 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Data;
26using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
27using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
28using HeuristicLab.Problems.DataAnalysis;
29using HeuristicLab.Problems.DataAnalysis.Symbolic;
30
31namespace HeuristicLab.Problems.GrammaticalEvolution {
32  [Item("Pearson R² Evaluator", "Calculates the square of the pearson correlation coefficient (also known as coefficient of determination) of a symbolic regression solution.")]
33  [StorableClass]
34  public class GESymbolicRegressionSingleObjectivePearsonRSquaredEvaluator : GESymbolicRegressionSingleObjectiveEvaluator {
35    [StorableConstructor]
36    protected GESymbolicRegressionSingleObjectivePearsonRSquaredEvaluator(bool deserializing) : base(deserializing) { }
37    protected GESymbolicRegressionSingleObjectivePearsonRSquaredEvaluator(GESymbolicRegressionSingleObjectivePearsonRSquaredEvaluator original, Cloner cloner)
38      : base(original, cloner) {
39    }
40    public override IDeepCloneable Clone(Cloner cloner) {
41      return new GESymbolicRegressionSingleObjectivePearsonRSquaredEvaluator(this, cloner);
42    }
43
44    public GESymbolicRegressionSingleObjectivePearsonRSquaredEvaluator() : base() { }
45
46    public override bool Maximization { get { return true; } }
47
48    public override IOperation Apply() {
49      var solution = GenotypeToPhenotypeMapperParameter.ActualValue.Map(
50        SymbolicExpressionTreeGrammarParameter.ActualValue,
51        IntegerVectorParameter.ActualValue
52      );
53      SymbolicExpressionTreeParameter.ActualValue = solution;
54      IEnumerable<int> rows = GenerateRowsToEvaluate();
55
56      double quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue,
57                                 solution, EstimationLimitsParameter.ActualValue.Lower,
58                                 EstimationLimitsParameter.ActualValue.Upper,
59                                 ProblemDataParameter.ActualValue, rows,
60                                 ApplyLinearScalingParameter.ActualValue.Value);
61      QualityParameter.ActualValue = new DoubleValue(quality);
62
63      return base.Apply();
64    }
65
66    public static double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
67                                   ISymbolicExpressionTree solution,
68                                   double lowerEstimationLimit, double upperEstimationLimit,
69                                   IRegressionProblemData problemData,
70                                   IEnumerable<int> rows, bool applyLinearScaling) {
71      IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows);
72      IEnumerable<double> targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
73      OnlineCalculatorError errorState;
74
75      double r2;
76      if (applyLinearScaling) {
77        var r2Calculator = new OnlinePearsonsRSquaredCalculator();
78        CalculateWithScaling(targetValues, estimatedValues, lowerEstimationLimit, upperEstimationLimit, r2Calculator, problemData.Dataset.Rows);
79        errorState = r2Calculator.ErrorState;
80        r2 = r2Calculator.RSquared;
81      } else {
82        IEnumerable<double> boundedEstimatedValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);
83        r2 = OnlinePearsonsRSquaredCalculator.Calculate(targetValues, boundedEstimatedValues, out errorState);
84      }
85      if (errorState != OnlineCalculatorError.None) return double.NaN;
86      return r2;
87    }
88
89    public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree,
90                                    IRegressionProblemData problemData, IEnumerable<int> rows) {
91      SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
92      EstimationLimitsParameter.ExecutionContext = context;
93      ApplyLinearScalingParameter.ExecutionContext = context;
94
95      double r2 = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue,
96                            tree, EstimationLimitsParameter.ActualValue.Lower,
97                            EstimationLimitsParameter.ActualValue.Upper,
98                            problemData, rows,
99                            ApplyLinearScalingParameter.ActualValue.Value);
100
101      SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
102      EstimationLimitsParameter.ExecutionContext = null;
103      ApplyLinearScalingParameter.ExecutionContext = null;
104
105      return r2;
106    }
107  }
108}
Note: See TracBrowser for help on using the repository browser.