Free cookie consent management tool by TermsFeed Policy Generator

source: branches/GrammaticalEvolution/HeuristicLab.Problems.GrammaticalEvolution/Symbolic/GESymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator.cs @ 10247

Last change on this file since 10247 was 10227, checked in by sawinkle, 11 years ago

#2109: Added four additional evaluators for the Symbolic Regression problem, namely

  • ConstantOptimizationEvaluator
  • MaxAbsoluteErrorEvaluator
  • MeanAbsoluteErrorEvaluator
  • MeanSquaredErrorEvaluator
File size: 5.0 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Data;
26using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
27using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
28using HeuristicLab.Problems.DataAnalysis;
29using HeuristicLab.Problems.DataAnalysis.Symbolic;
30
31namespace HeuristicLab.Problems.GrammaticalEvolution {
32  [Item("Mean squared error Evaluator", "Calculates the mean squared error of a symbolic regression solution.")]
33  [StorableClass]
34  public class GESymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator : GESymbolicRegressionSingleObjectiveEvaluator {
35    public override bool Maximization { get { return false; } }
36    [StorableConstructor]
37    protected GESymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator(bool deserializing) : base(deserializing) { }
38    protected GESymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator(GESymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator original, Cloner cloner)
39      : base(original, cloner) {
40    }
41    public override IDeepCloneable Clone(Cloner cloner) {
42      return new GESymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator(this, cloner);
43    }
44    public GESymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator() : base() { }
45
46    public override IOperation Apply() {
47      //var solution = SymbolicExpressionTreeParameter.ActualValue;
48      var solution = GenotypeToPhenotypeMapperParameter.ActualValue.Map(
49        SymbolicExpressionTreeGrammarParameter.ActualValue,
50        IntegerVectorParameter.ActualValue
51      );
52      SymbolicExpressionTreeParameter.ActualValue = solution;
53      IEnumerable<int> rows = GenerateRowsToEvaluate();
54
55      double quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, rows, ApplyLinearScalingParameter.ActualValue.Value);
56      QualityParameter.ActualValue = new DoubleValue(quality);
57
58      return base.Apply();
59    }
60
61    public static double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IRegressionProblemData problemData, IEnumerable<int> rows, bool applyLinearScaling) {
62      IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows);
63      IEnumerable<double> targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
64      OnlineCalculatorError errorState;
65
66      double mse;
67      if (applyLinearScaling) {
68        var mseCalculator = new OnlineMeanSquaredErrorCalculator();
69        CalculateWithScaling(targetValues, estimatedValues, lowerEstimationLimit, upperEstimationLimit, mseCalculator, problemData.Dataset.Rows);
70        errorState = mseCalculator.ErrorState;
71        mse = mseCalculator.MeanSquaredError;
72      } else {
73        IEnumerable<double> boundedEstimatedValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);
74        mse = OnlineMeanSquaredErrorCalculator.Calculate(targetValues, boundedEstimatedValues, out errorState);
75      }
76      if (errorState != OnlineCalculatorError.None) return double.NaN;
77      return mse;
78    }
79
80    public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows) {
81      SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
82      EstimationLimitsParameter.ExecutionContext = context;
83      ApplyLinearScalingParameter.ExecutionContext = context;
84
85      double mse = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, ApplyLinearScalingParameter.ActualValue.Value);
86
87      SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
88      EstimationLimitsParameter.ExecutionContext = null;
89      ApplyLinearScalingParameter.ExecutionContext = null;
90
91      return mse;
92    }
93  }
94}
Note: See TracBrowser for help on using the repository browser.