[10072] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
[10073] | 28 | using HeuristicLab.Encodings.IntegerVectorEncoding;
|
---|
[10072] | 29 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 30 | using HeuristicLab.Operators;
|
---|
| 31 | using HeuristicLab.Optimization;
|
---|
| 32 | using HeuristicLab.Parameters;
|
---|
| 33 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
[10073] | 34 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 35 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
| 36 | using HeuristicLab.Problems.GrammaticalEvolution.Mappers;
|
---|
[10072] | 37 | using HeuristicLab.Random;
|
---|
| 38 |
|
---|
[10073] | 39 | namespace HeuristicLab.Problems.GrammaticalEvolution {
|
---|
[10072] | 40 | [StorableClass]
|
---|
[10073] | 41 | public abstract class GESymbolicDataAnalysisEvaluator<T> : SingleSuccessorOperator,
|
---|
| 42 | IGESymbolicDataAnalysisEvaluator<T>, ISymbolicDataAnalysisInterpreterOperator, ISymbolicDataAnalysisBoundedOperator, IStochasticOperator
|
---|
[10072] | 43 | where T : class, IDataAnalysisProblemData {
|
---|
| 44 | private const string RandomParameterName = "Random";
|
---|
| 45 | private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
|
---|
| 46 | private const string SymbolicDataAnalysisTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
|
---|
| 47 | private const string ProblemDataParameterName = "ProblemData";
|
---|
[10073] | 48 | private const string IntegerVectorParameterName = "IntegerVector";
|
---|
| 49 | private const string GenotypeToPhenotypeMapperParameterName = "GenotypeToPhenotypeMapper";
|
---|
| 50 | private const string SymbolicExpressionTreeGrammarParameterName = "SymbolicExpressionTreeGrammar";
|
---|
| 51 |
|
---|
[10072] | 52 | private const string EstimationLimitsParameterName = "EstimationLimits";
|
---|
| 53 | private const string EvaluationPartitionParameterName = "EvaluationPartition";
|
---|
| 54 | private const string RelativeNumberOfEvaluatedSamplesParameterName = "RelativeNumberOfEvaluatedSamples";
|
---|
| 55 | private const string ApplyLinearScalingParameterName = "ApplyLinearScaling";
|
---|
| 56 | private const string ValidRowIndicatorParameterName = "ValidRowIndicator";
|
---|
| 57 |
|
---|
| 58 | public override bool CanChangeName { get { return false; } }
|
---|
| 59 |
|
---|
| 60 | #region parameter properties
|
---|
| 61 | ILookupParameter<IRandom> IStochasticOperator.RandomParameter {
|
---|
| 62 | get { return RandomParameter; }
|
---|
| 63 | }
|
---|
| 64 |
|
---|
| 65 | public IValueLookupParameter<IRandom> RandomParameter {
|
---|
| 66 | get { return (IValueLookupParameter<IRandom>)Parameters[RandomParameterName]; }
|
---|
| 67 | }
|
---|
| 68 | public ILookupParameter<ISymbolicExpressionTree> SymbolicExpressionTreeParameter {
|
---|
| 69 | get { return (ILookupParameter<ISymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
|
---|
| 70 | }
|
---|
| 71 | public ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter> SymbolicDataAnalysisTreeInterpreterParameter {
|
---|
| 72 | get { return (ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>)Parameters[SymbolicDataAnalysisTreeInterpreterParameterName]; }
|
---|
| 73 | }
|
---|
| 74 | public IValueLookupParameter<T> ProblemDataParameter {
|
---|
| 75 | get { return (IValueLookupParameter<T>)Parameters[ProblemDataParameterName]; }
|
---|
| 76 | }
|
---|
[10073] | 77 | public ILookupParameter<IntegerVector> IntegerVectorParameter {
|
---|
| 78 | get { return (ILookupParameter<IntegerVector>)Parameters[IntegerVectorParameterName]; }
|
---|
| 79 | }
|
---|
| 80 | public ILookupParameter<IGenotypeToPhenotypeMapper> GenotypeToPhenotypeMapperParameter {
|
---|
| 81 | get { return (ILookupParameter<IGenotypeToPhenotypeMapper>)Parameters[GenotypeToPhenotypeMapperParameterName]; }
|
---|
| 82 | }
|
---|
| 83 | public IValueLookupParameter<ISymbolicDataAnalysisGrammar> SymbolicExpressionTreeGrammarParameter {
|
---|
| 84 | get { return (IValueLookupParameter<ISymbolicDataAnalysisGrammar>)Parameters[SymbolicExpressionTreeGrammarParameterName]; }
|
---|
| 85 | }
|
---|
[10072] | 86 |
|
---|
| 87 | public IValueLookupParameter<IntRange> EvaluationPartitionParameter {
|
---|
| 88 | get { return (IValueLookupParameter<IntRange>)Parameters[EvaluationPartitionParameterName]; }
|
---|
| 89 | }
|
---|
| 90 | public IValueLookupParameter<DoubleLimit> EstimationLimitsParameter {
|
---|
| 91 | get { return (IValueLookupParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
|
---|
| 92 | }
|
---|
| 93 | public IValueLookupParameter<PercentValue> RelativeNumberOfEvaluatedSamplesParameter {
|
---|
| 94 | get { return (IValueLookupParameter<PercentValue>)Parameters[RelativeNumberOfEvaluatedSamplesParameterName]; }
|
---|
| 95 | }
|
---|
| 96 | public ILookupParameter<BoolValue> ApplyLinearScalingParameter {
|
---|
| 97 | get { return (ILookupParameter<BoolValue>)Parameters[ApplyLinearScalingParameterName]; }
|
---|
| 98 | }
|
---|
| 99 | public IValueLookupParameter<StringValue> ValidRowIndicatorParameter {
|
---|
| 100 | get { return (IValueLookupParameter<StringValue>)Parameters[ValidRowIndicatorParameterName]; }
|
---|
| 101 | }
|
---|
| 102 | #endregion
|
---|
| 103 |
|
---|
| 104 |
|
---|
| 105 | [StorableConstructor]
|
---|
[10073] | 106 | protected GESymbolicDataAnalysisEvaluator(bool deserializing) : base(deserializing) { }
|
---|
| 107 | protected GESymbolicDataAnalysisEvaluator(GESymbolicDataAnalysisEvaluator<T> original, Cloner cloner)
|
---|
[10072] | 108 | : base(original, cloner) {
|
---|
| 109 | }
|
---|
[10073] | 110 | public GESymbolicDataAnalysisEvaluator()
|
---|
[10072] | 111 | : base() {
|
---|
| 112 | Parameters.Add(new ValueLookupParameter<IRandom>(RandomParameterName, "The random generator to use."));
|
---|
| 113 | Parameters.Add(new LookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>(SymbolicDataAnalysisTreeInterpreterParameterName, "The interpreter that should be used to calculate the output values of the symbolic data analysis tree."));
|
---|
| 114 | Parameters.Add(new LookupParameter<ISymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic data analysis solution encoded as a symbolic expression tree."));
|
---|
| 115 | Parameters.Add(new ValueLookupParameter<T>(ProblemDataParameterName, "The problem data on which the symbolic data analysis solution should be evaluated."));
|
---|
[10073] | 116 | Parameters.Add(new LookupParameter<IntegerVector>(IntegerVectorParameterName, "The symbolic data analysis solution encoded as an integer vector genome."));
|
---|
| 117 | Parameters.Add(new LookupParameter<IGenotypeToPhenotypeMapper>(GenotypeToPhenotypeMapperParameterName, "Maps the genotype (an integer vector) to the phenotype (a symbolic expression tree)."));
|
---|
| 118 | Parameters.Add(new ValueLookupParameter<ISymbolicDataAnalysisGrammar>(SymbolicExpressionTreeGrammarParameterName, "The tree grammar that defines the correct syntax of symbolic expression trees that should be created."));
|
---|
| 119 |
|
---|
[10072] | 120 | Parameters.Add(new ValueLookupParameter<IntRange>(EvaluationPartitionParameterName, "The start index of the dataset partition on which the symbolic data analysis solution should be evaluated."));
|
---|
| 121 | Parameters.Add(new ValueLookupParameter<DoubleLimit>(EstimationLimitsParameterName, "The upper and lower limit that should be used as cut off value for the output values of symbolic data analysis trees."));
|
---|
| 122 | Parameters.Add(new ValueLookupParameter<PercentValue>(RelativeNumberOfEvaluatedSamplesParameterName, "The relative number of samples of the dataset partition, which should be randomly chosen for evaluation between the start and end index."));
|
---|
| 123 | Parameters.Add(new LookupParameter<BoolValue>(ApplyLinearScalingParameterName, "Flag that indicates if the individual should be linearly scaled before evaluating."));
|
---|
| 124 | Parameters.Add(new ValueLookupParameter<StringValue>(ValidRowIndicatorParameterName, "An indicator variable in the data set that specifies which rows should be evaluated (those for which the indicator <> 0) (optional)."));
|
---|
| 125 | }
|
---|
| 126 |
|
---|
| 127 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 128 | private void AfterDeserialization() {
|
---|
| 129 | if (Parameters.ContainsKey(ApplyLinearScalingParameterName) && !(Parameters[ApplyLinearScalingParameterName] is LookupParameter<BoolValue>))
|
---|
| 130 | Parameters.Remove(ApplyLinearScalingParameterName);
|
---|
| 131 | if (!Parameters.ContainsKey(ApplyLinearScalingParameterName))
|
---|
| 132 | Parameters.Add(new LookupParameter<BoolValue>(ApplyLinearScalingParameterName, "Flag that indicates if the individual should be linearly scaled before evaluating."));
|
---|
| 133 | if (!Parameters.ContainsKey(ValidRowIndicatorParameterName))
|
---|
| 134 | Parameters.Add(new ValueLookupParameter<StringValue>(ValidRowIndicatorParameterName, "An indicator variable in the data set that specifies which rows should be evaluated (those for which the indicator <> 0) (optional)."));
|
---|
| 135 | }
|
---|
| 136 |
|
---|
| 137 | protected IEnumerable<int> GenerateRowsToEvaluate() {
|
---|
| 138 | return GenerateRowsToEvaluate(RelativeNumberOfEvaluatedSamplesParameter.ActualValue.Value);
|
---|
| 139 | }
|
---|
| 140 |
|
---|
| 141 | protected IEnumerable<int> GenerateRowsToEvaluate(double percentageOfRows) {
|
---|
| 142 | IEnumerable<int> rows;
|
---|
| 143 | int samplesStart = EvaluationPartitionParameter.ActualValue.Start;
|
---|
| 144 | int samplesEnd = EvaluationPartitionParameter.ActualValue.End;
|
---|
| 145 | int testPartitionStart = ProblemDataParameter.ActualValue.TestPartition.Start;
|
---|
| 146 | int testPartitionEnd = ProblemDataParameter.ActualValue.TestPartition.End;
|
---|
| 147 | if (samplesEnd < samplesStart) throw new ArgumentException("Start value is larger than end value.");
|
---|
| 148 |
|
---|
| 149 | if (percentageOfRows.IsAlmost(1.0))
|
---|
| 150 | rows = Enumerable.Range(samplesStart, samplesEnd - samplesStart);
|
---|
| 151 | else {
|
---|
| 152 | int seed = RandomParameter.ActualValue.Next();
|
---|
| 153 | int count = (int)((samplesEnd - samplesStart) * percentageOfRows);
|
---|
| 154 | if (count == 0) count = 1;
|
---|
| 155 | rows = RandomEnumerable.SampleRandomNumbers(seed, samplesStart, samplesEnd, count);
|
---|
| 156 | }
|
---|
| 157 |
|
---|
| 158 | rows = rows.Where(i => i < testPartitionStart || testPartitionEnd <= i);
|
---|
| 159 | if (ValidRowIndicatorParameter.ActualValue != null) {
|
---|
| 160 | string indicatorVar = ValidRowIndicatorParameter.ActualValue.Value;
|
---|
| 161 | var problemData = ProblemDataParameter.ActualValue;
|
---|
| 162 | var indicatorRow = problemData.Dataset.GetReadOnlyDoubleValues(indicatorVar);
|
---|
| 163 | rows = rows.Where(r => !indicatorRow[r].IsAlmost(0.0));
|
---|
| 164 | }
|
---|
| 165 | return rows;
|
---|
| 166 | }
|
---|
| 167 |
|
---|
| 168 | [ThreadStatic]
|
---|
| 169 | private static double[] cache;
|
---|
| 170 | protected static void CalculateWithScaling(IEnumerable<double> targetValues, IEnumerable<double> estimatedValues,
|
---|
| 171 | double lowerEstimationLimit, double upperEstimationLimit,
|
---|
| 172 | IOnlineCalculator calculator, int maxRows) {
|
---|
| 173 | if (cache == null || cache.Length < maxRows) {
|
---|
| 174 | cache = new double[maxRows];
|
---|
| 175 | }
|
---|
| 176 |
|
---|
| 177 | // calculate linear scaling
|
---|
| 178 | int i = 0;
|
---|
| 179 | var linearScalingCalculator = new OnlineLinearScalingParameterCalculator();
|
---|
| 180 | var targetValuesEnumerator = targetValues.GetEnumerator();
|
---|
| 181 | var estimatedValuesEnumerator = estimatedValues.GetEnumerator();
|
---|
| 182 | while (targetValuesEnumerator.MoveNext() & estimatedValuesEnumerator.MoveNext()) {
|
---|
| 183 | double target = targetValuesEnumerator.Current;
|
---|
| 184 | double estimated = estimatedValuesEnumerator.Current;
|
---|
| 185 | cache[i] = estimated;
|
---|
| 186 | if (!double.IsNaN(estimated) && !double.IsInfinity(estimated))
|
---|
| 187 | linearScalingCalculator.Add(estimated, target);
|
---|
| 188 | i++;
|
---|
| 189 | }
|
---|
| 190 | if (linearScalingCalculator.ErrorState == OnlineCalculatorError.None && (targetValuesEnumerator.MoveNext() || estimatedValuesEnumerator.MoveNext()))
|
---|
| 191 | throw new ArgumentException("Number of elements in target and estimated values enumeration do not match.");
|
---|
| 192 |
|
---|
| 193 | double alpha = linearScalingCalculator.Alpha;
|
---|
| 194 | double beta = linearScalingCalculator.Beta;
|
---|
| 195 | if (linearScalingCalculator.ErrorState != OnlineCalculatorError.None) {
|
---|
| 196 | alpha = 0.0;
|
---|
| 197 | beta = 1.0;
|
---|
| 198 | }
|
---|
| 199 |
|
---|
| 200 | //calculate the quality by using the passed online calculator
|
---|
| 201 | targetValuesEnumerator = targetValues.GetEnumerator();
|
---|
| 202 | var scaledBoundedEstimatedValuesEnumerator = Enumerable.Range(0, i).Select(x => cache[x] * beta + alpha)
|
---|
| 203 | .LimitToRange(lowerEstimationLimit, upperEstimationLimit).GetEnumerator();
|
---|
| 204 |
|
---|
| 205 | while (targetValuesEnumerator.MoveNext() & scaledBoundedEstimatedValuesEnumerator.MoveNext()) {
|
---|
| 206 | calculator.Add(targetValuesEnumerator.Current, scaledBoundedEstimatedValuesEnumerator.Current);
|
---|
| 207 | }
|
---|
| 208 | }
|
---|
| 209 | }
|
---|
| 210 | }
|
---|