1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Linq;
|
---|
23 | using HeuristicLab.Data;
|
---|
24 | using HeuristicLab.Encodings.IntegerVectorEncoding;
|
---|
25 | using HeuristicLab.Problems.GeneralizedQuadraticAssignment;
|
---|
26 | using HeuristicLab.Problems.Instances.CordeauGQAP;
|
---|
27 | using HeuristicLab.Random;
|
---|
28 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
29 |
|
---|
30 | namespace UnitTests {
|
---|
31 | [TestClass]
|
---|
32 | public class CordeauCrossoverTest {
|
---|
33 | [TestMethod]
|
---|
34 | public void CordeauCrossoverFunctionalityTest() {
|
---|
35 | var provider = new CordeauGQAPInstanceProvider();
|
---|
36 | var instance = provider.LoadData(provider.GetDataDescriptors().First());
|
---|
37 | var gqap = new GeneralizedQuadraticAssignmentProblem();
|
---|
38 | gqap.Load(instance);
|
---|
39 |
|
---|
40 | var random = new MersenneTwister();
|
---|
41 | for (int i = 0; i < 100; i++) {
|
---|
42 | var parent1 = new IntegerVector(gqap.Demands.Length, random, 0, gqap.Capacities.Length);
|
---|
43 | var parent2 = new IntegerVector(gqap.Demands.Length, random, 0, gqap.Capacities.Length);
|
---|
44 |
|
---|
45 | try {
|
---|
46 | CordeauCrossover.Apply(random, gqap.Maximization,
|
---|
47 | parent1,
|
---|
48 | new DoubleValue(gqap.Evaluator.Evaluate(parent1, gqap.Weights, gqap.Distances, gqap.InstallationCosts, gqap.Demands, gqap.Capacities, gqap.TransportationCosts, gqap.ExpectedRandomQuality)),
|
---|
49 | parent2,
|
---|
50 | new DoubleValue(gqap.Evaluator.Evaluate(parent2, gqap.Weights, gqap.Distances, gqap.InstallationCosts, gqap.Demands, gqap.Capacities, gqap.TransportationCosts, gqap.ExpectedRandomQuality)),
|
---|
51 | gqap.Weights, gqap.Distances, gqap.InstallationCosts, gqap.Demands, gqap.Capacities, gqap.TransportationCosts, gqap.ExpectedRandomQuality, gqap.Evaluator);
|
---|
52 | } catch {
|
---|
53 | Assert.Fail("Error during crossover");
|
---|
54 | }
|
---|
55 | }
|
---|
56 | }
|
---|
57 | }
|
---|
58 | }
|
---|