[7373] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[7407] | 22 | using System;
|
---|
[7373] | 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
[7593] | 25 | using System.Threading;
|
---|
[7373] | 26 | using HeuristicLab.Common;
|
---|
| 27 | using HeuristicLab.Core;
|
---|
| 28 | using HeuristicLab.Data;
|
---|
| 29 | using HeuristicLab.Encodings.IntegerVectorEncoding;
|
---|
| 30 | using HeuristicLab.Parameters;
|
---|
| 31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
[7813] | 32 | using HeuristicLab.Random;
|
---|
[7373] | 33 |
|
---|
[7407] | 34 | namespace HeuristicLab.Problems.GeneralizedQuadraticAssignment {
|
---|
[7373] | 35 | [Item("GreedyRandomizedSolutionCreator", "Creates a solution according to the procedure described in Mateus, G., Resende, M., and Silva, R. 2011. GRASP with path-relinking for the generalized quadratic assignment problem. Journal of Heuristics 17, Springer Netherlands, pp. 527-565.")]
|
---|
| 36 | [StorableClass]
|
---|
[7970] | 37 | public class GreedyRandomizedSolutionCreator : GQAPStochasticSolutionCreator,
|
---|
| 38 | IEvaluatorAwareGQAPOperator {
|
---|
[7373] | 39 |
|
---|
| 40 | public IValueLookupParameter<IntValue> MaximumTriesParameter {
|
---|
| 41 | get { return (IValueLookupParameter<IntValue>)Parameters["MaximumTries"]; }
|
---|
| 42 | }
|
---|
[7593] | 43 | public IValueLookupParameter<BoolValue> CreateMostFeasibleSolutionParameter {
|
---|
| 44 | get { return (IValueLookupParameter<BoolValue>)Parameters["CreateMostFeasibleSolution"]; }
|
---|
| 45 | }
|
---|
[7970] | 46 | public IValueLookupParameter<IGQAPEvaluator> EvaluatorParameter {
|
---|
| 47 | get { return (IValueLookupParameter<IGQAPEvaluator>)Parameters["Evaluator"]; }
|
---|
| 48 | }
|
---|
[7373] | 49 |
|
---|
| 50 | [StorableConstructor]
|
---|
| 51 | protected GreedyRandomizedSolutionCreator(bool deserializing) : base(deserializing) { }
|
---|
| 52 | protected GreedyRandomizedSolutionCreator(GreedyRandomizedSolutionCreator original, Cloner cloner)
|
---|
| 53 | : base(original, cloner) { }
|
---|
| 54 | public GreedyRandomizedSolutionCreator()
|
---|
| 55 | : base() {
|
---|
[7593] | 56 | Parameters.Add(new ValueLookupParameter<IntValue>("MaximumTries", "The maximum number of tries to create a feasible solution after which an exception is thrown. If it is set to 0 or a negative value there will be an infinite number of attempts.", new IntValue(100000)));
|
---|
| 57 | Parameters.Add(new ValueLookupParameter<BoolValue>("CreateMostFeasibleSolution", "If this is set to true the operator will always succeed, and outputs the solution with the least violation instead of throwing an exception.", new BoolValue(false)));
|
---|
[7970] | 58 | Parameters.Add(new ValueLookupParameter<IGQAPEvaluator>("Evaluator", "The evaluator that is used to evaluate GQAP solutions."));
|
---|
[7373] | 59 | }
|
---|
| 60 |
|
---|
| 61 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 62 | return new GreedyRandomizedSolutionCreator(this, cloner);
|
---|
| 63 | }
|
---|
| 64 |
|
---|
[7970] | 65 | public static IntegerVector CreateSolution(IRandom random, DoubleArray demands, DoubleArray capacities,
|
---|
| 66 | IGQAPEvaluator evaluator,
|
---|
| 67 | int maximumTries, bool createMostFeasibleSolution, CancellationToken cancelToken) {
|
---|
[7593] | 68 | int tries = 0;
|
---|
| 69 | var assignment = new Dictionary<int, int>(demands.Length);
|
---|
| 70 | DoubleArray slack = new DoubleArray(capacities.Length);
|
---|
| 71 | double minViolation = double.MaxValue;
|
---|
| 72 | Dictionary<int, int> bestAssignment = null;
|
---|
| 73 | HashSet<int> CF = new HashSet<int>(), // set of chosen facilities / equipments
|
---|
[7407] | 74 | T = new HashSet<int>(), // set of facilities / equpiments that can be assigned to the set of chosen locations (CL)
|
---|
| 75 | CL = new HashSet<int>(), // set of chosen locations
|
---|
| 76 | F = new HashSet<int>(Enumerable.Range(0, demands.Length)), // set of (initially) all facilities / equipments
|
---|
| 77 | L = new HashSet<int>(Enumerable.Range(0, capacities.Length)); // set of (initially) all locations
|
---|
| 78 |
|
---|
[7593] | 79 | while (maximumTries <= 0 || tries < maximumTries) {
|
---|
| 80 | cancelToken.ThrowIfCancellationRequested();
|
---|
| 81 |
|
---|
| 82 | assignment.Clear();
|
---|
| 83 | for (int i = 0; i < capacities.Length; i++) slack[i] = capacities[i];
|
---|
| 84 | CF.Clear();
|
---|
| 85 | T.Clear();
|
---|
| 86 | CL.Clear();
|
---|
| 87 | F.Clear(); F.UnionWith(Enumerable.Range(0, demands.Length));
|
---|
| 88 | L.Clear(); L.UnionWith(Enumerable.Range(0, capacities.Length));
|
---|
| 89 |
|
---|
[7407] | 90 | double threshold = 1.0;
|
---|
| 91 | do {
|
---|
| 92 | if (L.Any() && random.NextDouble() < threshold) {
|
---|
[7807] | 93 | int l = L.SampleRandom(random);
|
---|
[7407] | 94 | L.Remove(l);
|
---|
| 95 | CL.Add(l);
|
---|
| 96 | T = new HashSet<int>(WithDemandEqualOrLess(F, GetMaximumSlack(slack, CL), demands));
|
---|
| 97 | }
|
---|
| 98 | if (T.Any()) {
|
---|
[7807] | 99 | int f = T.SampleRandom(random);
|
---|
[7407] | 100 | T.Remove(f);
|
---|
| 101 | F.Remove(f);
|
---|
| 102 | CF.Add(f);
|
---|
[7807] | 103 | int l = WithSlackGreaterOrEqual(CL, demands[f], slack).SampleRandom(random);
|
---|
[7407] | 104 | assignment.Add(f, l);
|
---|
| 105 | slack[l] -= demands[f];
|
---|
| 106 | T = new HashSet<int>(WithDemandEqualOrLess(F, GetMaximumSlack(slack, CL), demands));
|
---|
| 107 | threshold = 1.0 - (double)T.Count / Math.Max(F.Count, 1.0);
|
---|
| 108 | }
|
---|
| 109 | } while (T.Any() || L.Any());
|
---|
[7593] | 110 | if (maximumTries > 0) tries++;
|
---|
| 111 | if (!F.Any()) {
|
---|
| 112 | bestAssignment = assignment;
|
---|
| 113 | break;
|
---|
| 114 | } else if (createMostFeasibleSolution) {
|
---|
| 115 | // complete the solution and remember the one with least violation
|
---|
[7833] | 116 | foreach (var l in L.ToArray()) {
|
---|
| 117 | CL.Add(l);
|
---|
| 118 | L.Remove(l);
|
---|
| 119 | }
|
---|
[7593] | 120 | while (F.Any()) {
|
---|
[7807] | 121 | var f = F.MaxItems(x => demands[x]).SampleRandom(random);
|
---|
[7833] | 122 | var l = CL.MaxItems(x => slack[x]).SampleRandom(random);
|
---|
[7593] | 123 | F.Remove(f);
|
---|
| 124 | assignment.Add(f, l);
|
---|
| 125 | slack[l] -= demands[f];
|
---|
| 126 | }
|
---|
[7970] | 127 | double violation = evaluator.EvaluateOverbooking(slack, capacities);
|
---|
[7593] | 128 | if (violation < minViolation) {
|
---|
| 129 | bestAssignment = assignment;
|
---|
| 130 | assignment = new Dictionary<int, int>(demands.Length);
|
---|
| 131 | minViolation = violation;
|
---|
| 132 | }
|
---|
| 133 | }
|
---|
[7373] | 134 | }
|
---|
| 135 |
|
---|
[7593] | 136 | if (bestAssignment == null || bestAssignment.Count != demands.Length) throw new InvalidOperationException(String.Format("No solution could be found in {0} tries.", maximumTries));
|
---|
[7407] | 137 |
|
---|
[7593] | 138 | return new IntegerVector(bestAssignment.OrderBy(x => x.Key).Select(x => x.Value).ToArray());
|
---|
[7373] | 139 | }
|
---|
[7407] | 140 |
|
---|
[7593] | 141 | protected override IntegerVector CreateRandomSolution(IRandom random, DoubleArray demands, DoubleArray capacities) {
|
---|
| 142 | return CreateSolution(random, demands, capacities,
|
---|
[7970] | 143 | EvaluatorParameter.ActualValue,
|
---|
[7593] | 144 | MaximumTriesParameter.ActualValue.Value,
|
---|
| 145 | CreateMostFeasibleSolutionParameter.ActualValue.Value,
|
---|
| 146 | CancellationToken);
|
---|
| 147 | }
|
---|
| 148 |
|
---|
[7407] | 149 | private static IEnumerable<int> WithDemandEqualOrLess(IEnumerable<int> facilities, double maximum, DoubleArray demands) {
|
---|
| 150 | foreach (int f in facilities) {
|
---|
| 151 | if (demands[f] <= maximum) yield return f;
|
---|
| 152 | }
|
---|
| 153 | }
|
---|
| 154 |
|
---|
[7593] | 155 | private static double GetMaximumSlack(DoubleArray slack, HashSet<int> CL) {
|
---|
| 156 | return slack.Select((val, idx) => new { idx, val }).Where(x => CL.Contains(x.idx)).Select(x => x.val).Max();
|
---|
[7407] | 157 | }
|
---|
| 158 |
|
---|
[7593] | 159 | private static IEnumerable<int> WithSlackGreaterOrEqual(HashSet<int> locations, double minimum, DoubleArray slack) {
|
---|
[7407] | 160 | foreach (int l in locations) {
|
---|
| 161 | if (slack[l] >= minimum) yield return l;
|
---|
| 162 | }
|
---|
| 163 | }
|
---|
[7373] | 164 | }
|
---|
| 165 | }
|
---|