1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Encodings.IntegerVectorEncoding;
|
---|
29 | using HeuristicLab.Operators;
|
---|
30 | using HeuristicLab.Optimization;
|
---|
31 | using HeuristicLab.Parameters;
|
---|
32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
33 |
|
---|
34 | namespace HeuristicLab.Problems.GeneralizedQuadraticAssignment.Operators {
|
---|
35 | [Item("ApproximateLocalSearch", "The approximate local search is described in Mateus, G., Resende, M., and Silva, R. 2011. GRASP with path-relinking for the generalized quadratic assignment problem. Journal of Heuristics 17, Springer Netherlands, pp. 527-565.")]
|
---|
36 | [StorableClass]
|
---|
37 | public class ApproximateLocalSearch : SingleSuccessorOperator, IProblemInstanceAwareGQAPOperator,
|
---|
38 | IQualityAwareGQAPOperator, IGQAPLocalImprovementOperator, IAssignmentAwareGQAPOperator, IStochasticOperator {
|
---|
39 | public IProblem Problem { get; set; }
|
---|
40 | public Type ProblemType {
|
---|
41 | get { return typeof(GQAP); }
|
---|
42 | }
|
---|
43 |
|
---|
44 | public ILookupParameter<GQAPInstance> ProblemInstanceParameter {
|
---|
45 | get { return (ILookupParameter<GQAPInstance>)Parameters["ProblemInstance"]; }
|
---|
46 | }
|
---|
47 | public ILookupParameter<IntegerVector> AssignmentParameter {
|
---|
48 | get { return (ILookupParameter<IntegerVector>)Parameters["Assignment"]; }
|
---|
49 | }
|
---|
50 | public ILookupParameter<DoubleValue> QualityParameter {
|
---|
51 | get { return (ILookupParameter<DoubleValue>)Parameters["Quality"]; }
|
---|
52 | }
|
---|
53 | public ILookupParameter<Evaluation> EvaluationParameter {
|
---|
54 | get { return (ILookupParameter<Evaluation>)Parameters["Evaluation"]; }
|
---|
55 | }
|
---|
56 | public IValueLookupParameter<IntValue> MaximumIterationsParameter {
|
---|
57 | get { return (IValueLookupParameter<IntValue>)Parameters["MaximumIterations"]; }
|
---|
58 | }
|
---|
59 | public ILookupParameter<IntValue> EvaluatedSolutionsParameter {
|
---|
60 | get { return (ILookupParameter<IntValue>)Parameters["EvaluatedSolutions"]; }
|
---|
61 | }
|
---|
62 | public ILookupParameter<IRandom> RandomParameter {
|
---|
63 | get { return (ILookupParameter<IRandom>)Parameters["Random"]; }
|
---|
64 | }
|
---|
65 | public IValueLookupParameter<IntValue> MaximumCandidateListSizeParameter {
|
---|
66 | get { return (IValueLookupParameter<IntValue>)Parameters["MaximumCandidateListSize"]; }
|
---|
67 | }
|
---|
68 | public IValueLookupParameter<PercentValue> OneMoveProbabilityParameter {
|
---|
69 | get { return (IValueLookupParameter<PercentValue>)Parameters["OneMoveProbability"]; }
|
---|
70 | }
|
---|
71 | public ILookupParameter<ResultCollection> ResultsParameter {
|
---|
72 | get { return (ILookupParameter<ResultCollection>)Parameters["Results"]; }
|
---|
73 | }
|
---|
74 |
|
---|
75 | [StorableConstructor]
|
---|
76 | protected ApproximateLocalSearch(bool deserializing) : base(deserializing) { }
|
---|
77 | protected ApproximateLocalSearch(ApproximateLocalSearch original, Cloner cloner) : base(original, cloner) { }
|
---|
78 | public ApproximateLocalSearch()
|
---|
79 | : base() {
|
---|
80 | Parameters.Add(new LookupParameter<GQAPInstance>("ProblemInstance", GQAP.ProblemInstanceDescription));
|
---|
81 | Parameters.Add(new LookupParameter<IntegerVector>("Assignment", GQAPSolutionCreator.AssignmentDescription));
|
---|
82 | Parameters.Add(new LookupParameter<DoubleValue>("Quality", ""));
|
---|
83 | Parameters.Add(new LookupParameter<Evaluation>("Evaluation", GQAP.EvaluationDescription));
|
---|
84 | Parameters.Add(new ValueLookupParameter<IntValue>("MaximumIterations", "The maximum number of iterations that should be performed."));
|
---|
85 | Parameters.Add(new LookupParameter<IntValue>("EvaluatedSolutions", "The number of evaluated solution equivalents."));
|
---|
86 | Parameters.Add(new LookupParameter<IRandom>("Random", "The random number generator to use."));
|
---|
87 | Parameters.Add(new ValueLookupParameter<IntValue>("MaximumCandidateListSize", "The maximum number of candidates that should be found in each step.", new IntValue(10)));
|
---|
88 | Parameters.Add(new ValueLookupParameter<PercentValue>("OneMoveProbability", "The probability for performing a 1-move, which is the opposite of performing a 2-move.", new PercentValue(.5)));
|
---|
89 | Parameters.Add(new LookupParameter<ResultCollection>("Results", "The result collection that stores the results."));
|
---|
90 | }
|
---|
91 |
|
---|
92 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
93 | return new ApproximateLocalSearch(this, cloner);
|
---|
94 | }
|
---|
95 |
|
---|
96 | /// <summary>
|
---|
97 | /// The implementation differs slightly from Mateus et al. in that the maximumIterations parameter defines a cap
|
---|
98 | /// on the number of steps that the local search can perform. While the maxSampleSize parameter corresponds to
|
---|
99 | /// the maxItr parameter defined by Mateus et al.
|
---|
100 | /// </summary>
|
---|
101 | /// <param name="random">The random number generator to use.</param>
|
---|
102 | /// <param name="assignment">The equipment-location assignment vector.</param>
|
---|
103 | /// <param name="quality">The solution quality.</param>
|
---|
104 | /// <param name="evaluation">The evaluation result of the solution.</param>
|
---|
105 | /// <param name="maxCLS">The maximum number of candidates that should be found in each step.</param>
|
---|
106 | /// <param name="maximumIterations">The maximum number of iterations that should be performed each time the candidate list is generated.</param>
|
---|
107 | /// <param name="problemInstance">The problem instance that contains the data.</param>
|
---|
108 | /// <param name="evaluatedSolutions">The number of evaluated solutions.</param>
|
---|
109 | /// <param name="oneMoveProbability">The probability for performing a 1-move, which is the opposite of performing a 2-move.</param>
|
---|
110 | public static void Apply(IRandom random, IntegerVector assignment,
|
---|
111 | DoubleValue quality, ref Evaluation evaluation, IntValue maxCLS, IntValue maximumIterations,
|
---|
112 | GQAPInstance problemInstance, IntValue evaluatedSolutions, PercentValue oneMoveProbability) {
|
---|
113 | var capacities = problemInstance.Capacities;
|
---|
114 | var demands = problemInstance.Demands;
|
---|
115 | var evaluations = 0.0;
|
---|
116 | var deltaEvaluationFactor = 1.0 / assignment.Length;
|
---|
117 | while (true) {
|
---|
118 | int count = 0;
|
---|
119 | var CLS = new List<Tuple<NMove, double, Evaluation>>();
|
---|
120 | double sum = 0.0;
|
---|
121 | do {
|
---|
122 | NMove move;
|
---|
123 | if (random.NextDouble() < oneMoveProbability.Value)
|
---|
124 | move = StochasticNMoveSingleMoveGenerator.GenerateExactlyN(random, assignment, 1, capacities);
|
---|
125 | else move = StochasticNMoveSingleMoveGenerator.GenerateExactlyN(random, assignment, 2, capacities);
|
---|
126 |
|
---|
127 | var moveEval = GQAPNMoveEvaluator.Evaluate(move, assignment, evaluation, problemInstance);
|
---|
128 | evaluations += move.NewAssignments.Count * deltaEvaluationFactor;
|
---|
129 | double moveQuality = problemInstance.ToSingleObjective(moveEval);
|
---|
130 |
|
---|
131 | if (moveEval.ExcessDemand <= 0.0 && moveQuality < quality.Value) {
|
---|
132 | CLS.Add(Tuple.Create(move, moveQuality, moveEval));
|
---|
133 | sum += 1.0 / moveQuality;
|
---|
134 | }
|
---|
135 | count++;
|
---|
136 | } while (CLS.Count < maxCLS.Value && count < maximumIterations.Value);
|
---|
137 |
|
---|
138 | if (CLS.Count == 0) {
|
---|
139 | evaluatedSolutions.Value += (int)Math.Ceiling(evaluations);
|
---|
140 | return; // END
|
---|
141 | } else {
|
---|
142 | var ball = random.NextDouble() * sum;
|
---|
143 | var selected = CLS.Last();
|
---|
144 | foreach (var candidate in CLS) {
|
---|
145 | ball -= 1.0 / candidate.Item2;
|
---|
146 | if (ball <= 0.0) {
|
---|
147 | selected = candidate;
|
---|
148 | break;
|
---|
149 | }
|
---|
150 | }
|
---|
151 | NMoveMaker.Apply(assignment, selected.Item1);
|
---|
152 | quality.Value = selected.Item2;
|
---|
153 | evaluation = selected.Item3;
|
---|
154 | }
|
---|
155 | }
|
---|
156 | }
|
---|
157 |
|
---|
158 | public override IOperation Apply() {
|
---|
159 | var evaluation = EvaluationParameter.ActualValue;
|
---|
160 | Apply(RandomParameter.ActualValue,
|
---|
161 | AssignmentParameter.ActualValue,
|
---|
162 | QualityParameter.ActualValue,
|
---|
163 | ref evaluation,
|
---|
164 | MaximumCandidateListSizeParameter.ActualValue,
|
---|
165 | MaximumIterationsParameter.ActualValue,
|
---|
166 | ProblemInstanceParameter.ActualValue,
|
---|
167 | EvaluatedSolutionsParameter.ActualValue,
|
---|
168 | OneMoveProbabilityParameter.ActualValue);
|
---|
169 | EvaluationParameter.ActualValue = evaluation;
|
---|
170 | return base.Apply();
|
---|
171 | }
|
---|
172 | }
|
---|
173 | }
|
---|