Free cookie consent management tool by TermsFeed Policy Generator

source: branches/GeneralizedQAP/HeuristicLab.Problems.GeneralizedQuadraticAssignment.Common/3.3/ExtensionMethods.cs @ 7759

Last change on this file since 7759 was 7593, checked in by abeham, 13 years ago

#1614

  • Investigation in different solution creator that result in feasible solutions even for 95% fill level instances
  • Added option for all solution creators to produce the least infeasible solution if no feasible solution could be found
  • Added maximum tries parameter to all creators
File size: 17.0 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Core;
26
27namespace HeuristicLab.Problems.GeneralizedQuadraticAssignment.Common {
28  public static class ExtensionMethods {
29
30    #region Choosing from a sequence
31    /// <summary>
32    /// Chooses one elements from a sequence under equal chances for each element.
33    /// </summary>
34    /// <remarks>
35    /// Runtime complexity is O(1) for sequences that are <see cref="IList{T}"/> and
36    /// O(N) for all other.
37    /// </remarks>
38    /// <typeparam name="T">The type of the items to be selected.</typeparam>
39    /// <param name="source">The sequence of elements.</param>
40    /// <param name="random">The random number generator to use, its NextDouble() method must produce values in the range [0;1)</param>
41    /// <param name="count">The number of items to be selected.</param>
42    /// <returns>A sequence of elements that have been chosen randomly.</returns>
43    public static T ChooseUniformRandom<T>(this IEnumerable<T> source, IRandom random) {
44      return source.ChooseUniformRandom(random, 1).First();
45    }
46    /// <summary>
47    /// Chooses <paramref name="count"/> elements from a sequence with repetition under equal chances for each element.
48    /// </summary>
49    /// <remarks>
50    /// Runtime complexity is O(count) for sequences that are <see cref="IList{T}"/> and
51    /// O(N * count) for all other.
52    ///
53    /// The method is online.
54    /// </remarks>
55    /// <typeparam name="T">The type of the items to be selected.</typeparam>
56    /// <param name="source">The sequence of elements.</param>
57    /// <param name="random">The random number generator to use, its NextDouble() method must produce values in the range [0;1)</param>
58    /// <param name="count">The number of items to be selected.</param>
59    /// <returns>A sequence of elements that have been chosen randomly.</returns>
60    public static IEnumerable<T> ChooseUniformRandom<T>(this IEnumerable<T> source, IRandom random, int count) {
61      if (source == null) throw new ArgumentNullException("source", "sequence is null");
62      if (!source.Any()) throw new ArgumentException("sequence is empty.", "source");
63
64      var listSource = source as IList<T>;
65      if (listSource != null)
66        while (count > 0) {
67          yield return listSource[random.Next(listSource.Count)];
68          count--;
69        }
70
71      while (count > 0) {
72        var enumerator = source.GetEnumerator();
73        enumerator.MoveNext();
74        T selectedItem = enumerator.Current;
75        int counter = 1;
76        while (enumerator.MoveNext()) {
77          counter++;
78          if (counter * random.NextDouble() < 1.0)
79            selectedItem = enumerator.Current;
80        }
81        yield return selectedItem;
82        count--;
83      }
84    }
85    /// <summary>
86    /// Chooses <paramref name="count"/> elements from a sequence without repetition under equal chances for each element.
87    /// </summary>
88    /// <remarks>
89    /// Runtime complexity is O(count) for sequences that are <see cref="IList{T}"/> and
90    /// O(N * count) for all other.
91    ///
92    /// The method is online, but the source enumerable is transformed into an array.
93    /// </remarks>
94    /// <typeparam name="T">The type of the items to be selected.</typeparam>
95    /// <param name="source">The sequence of elements.</param>
96    /// <param name="random">The random number generator to use, its NextDouble() method must produce values in the range [0;1)</param>
97    /// <param name="count">The number of items to be selected.</param>
98    /// <returns>A sequence of elements that have been chosen randomly.</returns>
99    public static IEnumerable<T> ChooseUniformRandomWithoutRepetition<T>(this IEnumerable<T> source, IRandom random, int count) {
100      return source.Shuffle(random).Take(count);
101    }
102
103    /// <summary>
104    /// Chooses items out of a sequence with repetition. The chance that an item is selected is proportional or inverse-proportional
105    /// to the value obtained from <paramref name="valueSelector"/>.
106    /// </summary>
107    /// <remarks>
108    /// In case both <paramref name="maximization"/> and <paramref name="windowing"/> are false values must be &gt; 0,
109    /// otherwise an InvalidOperationException is thrown.
110    ///
111    /// The method is online, but internally holds two arrays: One that is the sequence itself and another one for the values. The <paramref name="valueSelector"/>
112    /// is only applied once for each item.
113    /// </remarks>
114    /// <typeparam name="T">The type of the items to be selected.</typeparam>
115    /// <param name="source">The sequence of elements.</param>
116    /// <param name="random">The random number generator to use, its NextDouble() method must produce values in the range [0;1)</param>
117    /// <param name="count">The number of items to be selected.</param>
118    /// <param name="valueSelector">The function that calculates a proportional value for each item.</param>
119    /// <param name="windowing">Whether to scale the proportional values or not.</param>
120    /// <param name="maximization">Determines whether to choose proportionally (true) or inverse-proportionally (false).</param>
121    /// <returns>A sequence of selected items. The sequence might contain the same item more than once.</returns>
122    public static IEnumerable<T> ChooseProportionalRandom<T>(this IEnumerable<T> source, IRandom random, int count, Func<T, double> valueSelector, bool windowing, bool maximization) {
123      return source.ChooseProportionalRandom(random, valueSelector, windowing, maximization).Take(count);
124    }
125    /// <summary>
126    /// Same as <seealso cref="ChooseProportionalRandom<T>"/>, but selects each item exactly once.
127    /// </summary>
128    /// <remarks>
129    /// In case both <paramref name="maximization"/> and <paramref name="windowing"/> are false values must be &gt; 0,
130    /// otherwise an InvalidOperationException is thrown.
131    ///
132    /// The method is online, but internally holds two arrays: One that is the sequence itself and another one for the values. The <paramref name="valueSelector"/>
133    /// is only applied once for each item.
134    /// </remarks>
135    /// <typeparam name="T">The type of the items to be selected.</typeparam>
136    /// <param name="source">The sequence of elements.</param>
137    /// <param name="random">The random number generator to use, its NextDouble() method must produce values in the range [0;1)</param>
138    /// <param name="count">The number of items to be selected.</param>
139    /// <param name="valueSelector">The function that calculates a proportional value for each item.</param>
140    /// <param name="windowing">Whether to scale the proportional values or not.</param>
141    /// <param name="maximization">Determines whether to choose proportionally (true) or inverse-proportionally (false).</param>
142    /// <returns>A sequence of selected items.</returns>
143    public static IEnumerable<T> ChooseProportionalRandomWithoutRepetition<T>(this IEnumerable<T> source, IRandom random, int count, Func<T, double> valueSelector, bool windowing, bool maximization) {
144      return source.ChooseProportionalRandomWithoutRepetition(random, valueSelector, windowing, maximization).Take(count);
145    }
146    #region Proportional Helpers
147    private static IEnumerable<T> ChooseProportionalRandom<T>(this IEnumerable<T> source, IRandom random, Func<T, double> valueSelector, bool windowing, bool maximization) {
148      if (source == null) throw new ArgumentNullException("source", "sequence is null");
149      if (!source.Any()) throw new ArgumentException("sequence is empty.", "source");
150
151      var sourceArray = source.ToArray();
152      var valueArray = PrepareProportional<T>(sourceArray, valueSelector, windowing, maximization);
153      double total = valueArray.Sum();
154
155      while (true) {
156        int index = 0;
157        double ball = valueArray[index], sum = random.NextDouble() * total;
158        while (ball < sum)
159          ball += valueArray[++index];
160        yield return sourceArray[index];
161      }
162    }
163    private static IEnumerable<T> ChooseProportionalRandomWithoutRepetition<T>(this IEnumerable<T> source, IRandom random, Func<T, double> valueSelector, bool windowing, bool maximization) {
164      if (source == null) throw new ArgumentNullException("source", "sequence is null");
165      if (!source.Any()) throw new ArgumentException("sequence is empty.", "source");
166
167      var sourceArray = source.ToArray();
168      var valueArray = PrepareProportional<T>(sourceArray, valueSelector, windowing, maximization);
169      double total = valueArray.Sum();
170
171      HashSet<int> chosenIndices = new HashSet<int>();
172      while (chosenIndices.Count < sourceArray.Length) {
173        int index = 0;
174        double ball = valueArray[index], sum = random.NextDouble() * total;
175        while (ball < sum) {
176          index++;
177          if (!chosenIndices.Contains(index))
178            ball += valueArray[++index];
179        }
180        yield return sourceArray[index];
181        chosenIndices.Add(index);
182        total -= valueArray[index];
183      }
184    }
185    private static double[] PrepareProportional<T>(IList<T> sourceArray, Func<T, double> valueSelector, bool windowing, bool maximization) {
186      double maxValue = double.MinValue, minValue = double.MaxValue;
187      double[] valueArray = new double[sourceArray.Count];
188
189      for (int i = 0; i < sourceArray.Count; i++) {
190        valueArray[i] = valueSelector(sourceArray[i]);
191        if (valueArray[i] > maxValue) maxValue = valueArray[i];
192        if (valueArray[i] < minValue) minValue = valueArray[i];
193      }
194      if (minValue == maxValue) {  // all values are equal
195        for (int i = 0; i < sourceArray.Count; i++) {
196          valueArray[i] = 1.0;
197        }
198      } else {
199        if (windowing) {
200          if (maximization) ProportionalScale(valueArray, minValue);
201          else InverseProportionalScale(valueArray, maxValue);
202        } else {
203          if (minValue < 0.0) throw new InvalidOperationException("Proportional selection without windowing does not work with values < 0.");
204          if (!maximization) InverseProportionalScale(valueArray, 2 * maxValue);
205        }
206      }
207      return valueArray;
208    }
209    private static void ProportionalScale(double[] values, double minValue) {
210      for (int i = 0; i < values.Length; i++) {
211        values[i] = values[i] - minValue;
212      }
213    }
214    private static void InverseProportionalScale(double[] values, double maxValue) {
215      for (int i = 0; i < values.Length; i++) {
216        values[i] = maxValue - values[i];
217      }
218    }
219    #endregion
220
221    /// <summary>
222    /// Selects the first element in the sequence that is maximal with respect to the given key.
223    /// </summary>
224    /// <remarks>
225    /// Runtime complexity of the operation is O(N).
226    /// </remarks>
227    /// <typeparam name="T">The type of the elements.</typeparam>
228    /// <typeparam name="TComparable">The selected key (needs to be an IComparable).</typeparam>
229    /// <param name="source">The enumeration in which the maximum item should be found.</param>
230    /// <param name="keySelector">The function that selects the key.</param>
231    /// <returns>The element in the enumeration where the selected key is the maximum.</returns>
232    public static T ChooseMax<T, TComparable>(this IEnumerable<T> source, Func<T, TComparable> keySelector) where TComparable : IComparable {
233      if (source == null) throw new ArgumentNullException("source", "sequence is null");
234      IEnumerator<T> enumerator = source.GetEnumerator();
235      if (!enumerator.MoveNext()) throw new ArgumentException("sequence is empty", "source");
236      T result = enumerator.Current;
237      TComparable max = keySelector(result);
238      while (enumerator.MoveNext()) {
239        T item = enumerator.Current;
240        TComparable comparison = keySelector(item);
241        if (comparison.CompareTo(max) > 0) {
242          result = item;
243          max = comparison;
244        }
245      }
246      return result;
247    }
248
249    /// <summary>
250    /// Selects the first element in the sequence where the selected key is the minimum.
251    /// </summary>
252    /// <remarks>
253    /// Runtime complexity of the operation is O(N).
254    /// </remarks>
255    /// <typeparam name="T">The type of the elements.</typeparam>
256    /// <typeparam name="TComparable">The selected key (needs to be an IComparable).</typeparam>
257    /// <param name="source">The enumeration in which the minimum item should be found.</param>
258    /// <param name="keySelector">The function that selects the key.</param>
259    /// <returns>The element in the enumeration where the selected key is the minimum.</returns>
260    public static T ChooseMin<T, TComparable>(this IEnumerable<T> source, Func<T, TComparable> keySelector) where TComparable : IComparable {
261      if (source == null) throw new ArgumentNullException("source", "sequence is null");
262      IEnumerator<T> enumerator = source.GetEnumerator();
263      if (!enumerator.MoveNext()) throw new ArgumentException("sequence is empty", "source");
264      T result = enumerator.Current;
265      TComparable min = keySelector(result);
266      while (enumerator.MoveNext()) {
267        T item = enumerator.Current;
268        TComparable comparison = keySelector(item);
269        if (comparison.CompareTo(min) < 0) {
270          result = item;
271          min = comparison;
272        }
273      }
274      return result;
275    }
276    #endregion
277
278    #region Shuffling
279    /// <summary>
280    /// Shuffles an enumerable and returns a new enumerable according to the Fisher-Yates shuffle.
281    /// </summary>
282    /// <remarks>
283    /// Note that this is an online shuffle, but the source enumerable is transformed into an array.
284    ///
285    /// The implementation is described in http://stackoverflow.com/questions/1287567/c-is-using-random-and-orderby-a-good-shuffle-algorithm.
286    /// </remarks>
287    /// <typeparam name="T">The type of the items that are to be shuffled.</typeparam>
288    /// <param name="source">The enumerable that contains the items.</param>
289    /// <param name="random">The random number generator, its Next(n) method must deliver uniformly distributed random numbers in the range [0;n).</param>
290    /// <returns>An enumerable with the elements shuffled.</returns>
291    public static IEnumerable<T> Shuffle<T>(this IEnumerable<T> source, IRandom random) {
292      T[] elements = source.ToArray();
293      for (int i = elements.Length - 1; i > 0; i--) {
294        // Swap element "i" with a random earlier element it (or itself)
295        int swapIndex = random.Next(i + 1);
296        yield return elements[swapIndex];
297        elements[swapIndex] = elements[i];
298        // we don't actually perform the swap, we can forget about the
299        // swapped element because we already returned it.
300      }
301      yield return elements[0];
302    }
303    #endregion
304
305    #region Graph walk
306    /// <summary>
307    /// Walks an operator graph in that it jumps from one operator to all its operator parameters and yields each operator it touches.
308    /// Cycles are detected and not walked twice.
309    /// </summary>
310    /// <param name="initial">The operator where the walk starts (is also yielded).</param>
311    /// <returns>An enumeration of all the operators that could be found.</returns>
312    public static IEnumerable<IOperator> Walk(this IOperator initial) {
313      var open = new Stack<IOperator>();
314      var visited = new HashSet<IOperator>();
315      open.Push(initial);
316
317      while (open.Any()) {
318        IOperator current = open.Pop();
319        if (visited.Contains(current)) continue;
320        visited.Add(current);
321
322        foreach (var parameter in current.Parameters.OfType<IValueParameter>()) {
323          if (typeof(IOperator).IsAssignableFrom(parameter.DataType)) {
324            if (parameter.Value != null)
325              open.Push((IOperator)parameter.Value);
326          }
327        }
328
329        yield return current;
330      }
331    }
332    #endregion
333
334    #region Matrix operations
335    public static double[,] Transpose(this double[,] matrix) {
336      var result = new double[matrix.GetLength(1), matrix.GetLength(0)];
337      for (int i = 0; i < matrix.GetLength(0); i++)
338        for (int j = 0; j < matrix.GetLength(1); j++)
339          result[j, i] = matrix[i, j];
340      return result;
341    }
342    #endregion
343  }
344}
Note: See TracBrowser for help on using the repository browser.