Free cookie consent management tool by TermsFeed Policy Generator

source: branches/GeneralizedQAP/HeuristicLab.Problems.DataAnalysis.Regression/3.3/Symbolic/Analyzers/TrainingBestScaledSymbolicRegressionSolutionAnalyzer.cs @ 6646

Last change on this file since 6646 was 5863, checked in by mkommend, 14 years ago

#1418: Added NonDiscoverableType attribute to outdated analyzers.

File size: 24.3 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using System.Linq;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
28using HeuristicLab.Operators;
29using HeuristicLab.Optimization;
30using HeuristicLab.Parameters;
31using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
32using HeuristicLab.PluginInfrastructure;
33using HeuristicLab.Problems.DataAnalysis.Evaluators;
34using HeuristicLab.Problems.DataAnalysis.Symbolic;
35
36namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers {
37  /// <summary>
38  /// An operator that analyzes the training best scaled symbolic regression solution.
39  /// </summary>
40  [Item("TrainingBestScaledSymbolicRegressionSolutionAnalyzer", "An operator that analyzes the training best scaled symbolic regression solution.")]
41  [StorableClass]
42  [NonDiscoverableType]
43  public sealed class TrainingBestScaledSymbolicRegressionSolutionAnalyzer : SingleSuccessorOperator, ISymbolicRegressionAnalyzer {
44    private const string ApplyLinearScalingParameterName = "ApplyLinearScaling";
45    private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
46    private const string QualityParameterName = "Quality";
47    private const string MaximizationParameterName = "Maximization";
48    private const string CalculateSolutionComplexityParameterName = "CalculateSolutionComplexity";
49    private const string CalculateSolutionAccuracyParameterName = "CalculateSolutionAccuracy";
50    private const string SymbolicExpressionTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
51    private const string ProblemDataParameterName = "DataAnalysisProblemData";
52    private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
53    private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
54    private const string BestSolutionParameterName = "Best training solution";
55    private const string BestSolutionQualityParameterName = "Best training solution quality";
56    private const string BestSolutionLengthParameterName = "Best training solution length";
57    private const string BestSolutionHeightParameterName = "Best training solution height";
58    private const string BestSolutionVariablesParameterName = "Best training solution variables";
59    private const string BestSolutionTrainingRSquaredParameterName = "Best training solution R² (training)";
60    private const string BestSolutionTestRSquaredParameterName = "Best training solution R² (test)";
61    private const string BestSolutionTrainingMseParameterName = "Best training solution mean squared error (training)";
62    private const string BestSolutionTestMseParameterName = "Best training solution mean squared error (test)";
63    private const string BestSolutionTrainingRelativeErrorParameterName = "Best training solution relative error (training)";
64    private const string BestSolutionTestRelativeErrorParameterName = "Best training solution relative error (test)";
65    private const string ResultsParameterName = "Results";
66
67    #region parameter properties
68    public ScopeTreeLookupParameter<SymbolicExpressionTree> SymbolicExpressionTreeParameter {
69      get { return (ScopeTreeLookupParameter<SymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
70    }
71    public ScopeTreeLookupParameter<DoubleValue> QualityParameter {
72      get { return (ScopeTreeLookupParameter<DoubleValue>)Parameters[QualityParameterName]; }
73    }
74    public ILookupParameter<BoolValue> MaximizationParameter {
75      get { return (ILookupParameter<BoolValue>)Parameters[MaximizationParameterName]; }
76    }
77    public IValueParameter<BoolValue> CalculateSolutionComplexityParameter {
78      get { return (IValueParameter<BoolValue>)Parameters[CalculateSolutionComplexityParameterName]; }
79    }
80    public IValueParameter<BoolValue> CalculateSolutionAccuracyParameter {
81      get { return (IValueParameter<BoolValue>)Parameters[CalculateSolutionAccuracyParameterName]; }
82    }
83    public IValueLookupParameter<ISymbolicExpressionTreeInterpreter> SymbolicExpressionTreeInterpreterParameter {
84      get { return (IValueLookupParameter<ISymbolicExpressionTreeInterpreter>)Parameters[SymbolicExpressionTreeInterpreterParameterName]; }
85    }
86    public IValueLookupParameter<DataAnalysisProblemData> ProblemDataParameter {
87      get { return (IValueLookupParameter<DataAnalysisProblemData>)Parameters[ProblemDataParameterName]; }
88    }
89    public IValueLookupParameter<DoubleValue> UpperEstimationLimitParameter {
90      get { return (IValueLookupParameter<DoubleValue>)Parameters[UpperEstimationLimitParameterName]; }
91    }
92    public IValueLookupParameter<DoubleValue> LowerEstimationLimitParameter {
93      get { return (IValueLookupParameter<DoubleValue>)Parameters[LowerEstimationLimitParameterName]; }
94    }
95
96    public ILookupParameter<SymbolicRegressionSolution> BestSolutionParameter {
97      get { return (ILookupParameter<SymbolicRegressionSolution>)Parameters[BestSolutionParameterName]; }
98    }
99    public ILookupParameter<DoubleValue> BestSolutionQualityParameter {
100      get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionQualityParameterName]; }
101    }
102    public ILookupParameter<IntValue> BestSolutionLengthParameter {
103      get { return (ILookupParameter<IntValue>)Parameters[BestSolutionLengthParameterName]; }
104    }
105    public ILookupParameter<IntValue> BestSolutionHeightParameter {
106      get { return (ILookupParameter<IntValue>)Parameters[BestSolutionHeightParameterName]; }
107    }
108    public ILookupParameter<IntValue> BestSolutionVariablesParameter {
109      get { return (ILookupParameter<IntValue>)Parameters[BestSolutionVariablesParameterName]; }
110    }
111    public ILookupParameter<DoubleValue> BestSolutionTrainingRSquaredParameter {
112      get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionTrainingRSquaredParameterName]; }
113    }
114    public ILookupParameter<DoubleValue> BestSolutionTestRSquaredParameter {
115      get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionTestRSquaredParameterName]; }
116    }
117    public ILookupParameter<DoubleValue> BestSolutionTrainingMseParameter {
118      get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionTrainingMseParameterName]; }
119    }
120    public ILookupParameter<DoubleValue> BestSolutionTestMseParameter {
121      get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionTestMseParameterName]; }
122    }
123    public ILookupParameter<DoubleValue> BestSolutionTrainingRelativeErrorParameter {
124      get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionTrainingRelativeErrorParameterName]; }
125    }
126    public ILookupParameter<DoubleValue> BestSolutionTestRelativeErrorParameter {
127      get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionTestRelativeErrorParameterName]; }
128    }
129    public ILookupParameter<ResultCollection> ResultsParameter {
130      get { return (ILookupParameter<ResultCollection>)Parameters[ResultsParameterName]; }
131    }
132    public IValueLookupParameter<BoolValue> ApplyLinearScalingParameter {
133      get { return (IValueLookupParameter<BoolValue>)Parameters[ApplyLinearScalingParameterName]; }
134    }
135    #endregion
136    #region properties
137    public ItemArray<SymbolicExpressionTree> SymbolicExpressionTree {
138      get { return SymbolicExpressionTreeParameter.ActualValue; }
139    }
140    public ItemArray<DoubleValue> Quality {
141      get { return QualityParameter.ActualValue; }
142    }
143    public BoolValue Maximization {
144      get { return MaximizationParameter.ActualValue; }
145    }
146    public BoolValue CalculateSolutionComplexity {
147      get { return CalculateSolutionComplexityParameter.Value; }
148      set { CalculateSolutionComplexityParameter.Value = value; }
149    }
150    public BoolValue CalculateSolutionAccuracy {
151      get { return CalculateSolutionAccuracyParameter.Value; }
152      set { CalculateSolutionAccuracyParameter.Value = value; }
153    }
154    public ISymbolicExpressionTreeInterpreter SymbolicExpressionTreeInterpreter {
155      get { return SymbolicExpressionTreeInterpreterParameter.ActualValue; }
156    }
157    public DataAnalysisProblemData ProblemData {
158      get { return ProblemDataParameter.ActualValue; }
159    }
160    public DoubleValue UpperEstimationLimit {
161      get { return UpperEstimationLimitParameter.ActualValue; }
162    }
163    public DoubleValue LowerEstimationLimit {
164      get { return LowerEstimationLimitParameter.ActualValue; }
165    }
166    public ResultCollection Results {
167      get { return ResultsParameter.ActualValue; }
168    }
169    public SymbolicRegressionSolution BestSolution {
170      get { return BestSolutionParameter.ActualValue; }
171      set { BestSolutionParameter.ActualValue = value; }
172    }
173    public DoubleValue BestSolutionQuality {
174      get { return BestSolutionQualityParameter.ActualValue; }
175      set { BestSolutionQualityParameter.ActualValue = value; }
176    }
177    public IntValue BestSolutionLength {
178      get { return BestSolutionLengthParameter.ActualValue; }
179      set { BestSolutionLengthParameter.ActualValue = value; }
180    }
181    public IntValue BestSolutionHeight {
182      get { return BestSolutionHeightParameter.ActualValue; }
183      set { BestSolutionHeightParameter.ActualValue = value; }
184    }
185    public IntValue BestSolutionVariables {
186      get { return BestSolutionVariablesParameter.ActualValue; }
187      set { BestSolutionVariablesParameter.ActualValue = value; }
188    }
189    public DoubleValue BestSolutionTrainingRSquared {
190      get { return BestSolutionTrainingRSquaredParameter.ActualValue; }
191      set { BestSolutionTrainingRSquaredParameter.ActualValue = value; }
192    }
193    public DoubleValue BestSolutionTestRSquared {
194      get { return BestSolutionTestRSquaredParameter.ActualValue; }
195      set { BestSolutionTestRSquaredParameter.ActualValue = value; }
196    }
197    public DoubleValue BestSolutionTrainingMse {
198      get { return BestSolutionTrainingMseParameter.ActualValue; }
199      set { BestSolutionTrainingMseParameter.ActualValue = value; }
200    }
201    public DoubleValue BestSolutionTestMse {
202      get { return BestSolutionTestMseParameter.ActualValue; }
203      set { BestSolutionTestMseParameter.ActualValue = value; }
204    }
205    public DoubleValue BestSolutionTrainingRelativeError {
206      get { return BestSolutionTrainingRelativeErrorParameter.ActualValue; }
207      set { BestSolutionTrainingRelativeErrorParameter.ActualValue = value; }
208    }
209    public DoubleValue BestSolutionTestRelativeError {
210      get { return BestSolutionTestRelativeErrorParameter.ActualValue; }
211      set { BestSolutionTestRelativeErrorParameter.ActualValue = value; }
212    }
213    public BoolValue ApplyLinearScaling {
214      get { return ApplyLinearScalingParameter.ActualValue; }
215      set { ApplyLinearScalingParameter.ActualValue = value; }
216    }
217    #endregion
218
219    [StorableConstructor]
220    private TrainingBestScaledSymbolicRegressionSolutionAnalyzer(bool deserializing) : base(deserializing) { }
221    private TrainingBestScaledSymbolicRegressionSolutionAnalyzer(TrainingBestScaledSymbolicRegressionSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
222    public TrainingBestScaledSymbolicRegressionSolutionAnalyzer()
223      : base() {
224      Parameters.Add(new ValueLookupParameter<BoolValue>(ApplyLinearScalingParameterName, "The switch determines if the best solution should be linearly scaled on the whole training set.", new BoolValue(true)));
225      Parameters.Add(new LookupParameter<BoolValue>(MaximizationParameterName, "The direction of optimization."));
226      Parameters.Add(new ScopeTreeLookupParameter<SymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic expression trees to analyze."));
227      Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>(QualityParameterName, "The qualities of the symbolic expression trees to analyze."));
228      Parameters.Add(new ValueParameter<BoolValue>(CalculateSolutionComplexityParameterName, "Determines if the length and height of the training best solution should be calculated.", new BoolValue(true)));
229      Parameters.Add(new ValueParameter<BoolValue>(CalculateSolutionAccuracyParameterName, "Determines if the accuracy of the training best solution on the training and test set should be calculated.", new BoolValue(true)));
230      Parameters.Add(new ValueLookupParameter<ISymbolicExpressionTreeInterpreter>(SymbolicExpressionTreeInterpreterParameterName, "The interpreter that should be used for the analysis of symbolic expression trees."));
231      Parameters.Add(new ValueLookupParameter<DataAnalysisProblemData>(ProblemDataParameterName, "The problem data for which the symbolic expression tree is a solution."));
232      Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperEstimationLimitParameterName, "The upper estimation limit that was set for the evaluation of the symbolic expression trees."));
233      Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerEstimationLimitParameterName, "The lower estimation limit that was set for the evaluation of the symbolic expression trees."));
234      Parameters.Add(new LookupParameter<SymbolicRegressionSolution>(BestSolutionParameterName, "The best symbolic regression solution."));
235      Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionQualityParameterName, "The quality of the best symbolic regression solution."));
236      Parameters.Add(new LookupParameter<IntValue>(BestSolutionLengthParameterName, "The length of the best symbolic regression solution."));
237      Parameters.Add(new LookupParameter<IntValue>(BestSolutionHeightParameterName, "The height of the best symbolic regression solution."));
238      Parameters.Add(new LookupParameter<IntValue>(BestSolutionVariablesParameterName, "The number of variables used by the best symbolic regression solution."));
239      Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionTrainingRSquaredParameterName, "The R² value on the training set of the best symbolic regression solution."));
240      Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionTestRSquaredParameterName, "The R² value on the test set of the best symbolic regression solution."));
241      Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionTrainingMseParameterName, "The mean squared error on the training set of the best symbolic regression solution."));
242      Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionTestMseParameterName, "The mean squared error value on the test set of the best symbolic regression solution."));
243      Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionTrainingRelativeErrorParameterName, "The relative error on the training set of the best symbolic regression solution."));
244      Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionTestRelativeErrorParameterName, "The relative error value on the test set of the best symbolic regression solution."));
245      Parameters.Add(new LookupParameter<ResultCollection>(ResultsParameterName, "The result collection where the best symbolic regression solution should be stored."));
246    }
247
248    public override IDeepCloneable Clone(Cloner cloner) {
249      return new TrainingBestScaledSymbolicRegressionSolutionAnalyzer(this, cloner);
250    }
251
252    [StorableHook(HookType.AfterDeserialization)]
253    private void AfterDeserialization() {
254      if (!Parameters.ContainsKey(ApplyLinearScalingParameterName)) {
255        Parameters.Add(new ValueLookupParameter<BoolValue>(ApplyLinearScalingParameterName, "The switch determines if the best solution should be linearly scaled on the whole training set.", new BoolValue(true)));
256      }
257    }
258
259    public override IOperation Apply() {
260      #region find best tree
261      double bestQuality = Maximization.Value ? double.NegativeInfinity : double.PositiveInfinity;
262      SymbolicExpressionTree bestTree = null;
263      SymbolicExpressionTree[] tree = SymbolicExpressionTree.ToArray();
264      double[] quality = Quality.Select(x => x.Value).ToArray();
265      for (int i = 0; i < tree.Length; i++) {
266        if ((Maximization.Value && quality[i] > bestQuality) ||
267            (!Maximization.Value && quality[i] < bestQuality)) {
268          bestQuality = quality[i];
269          bestTree = tree[i];
270        }
271      }
272      #endregion
273
274      #region update best solution
275      // if the best tree is better than the current best solution => update
276      bool newBest =
277        BestSolutionQuality == null ||
278        (Maximization.Value && bestQuality > BestSolutionQuality.Value) ||
279        (!Maximization.Value && bestQuality < BestSolutionQuality.Value);
280      if (newBest) {
281        double upperEstimationLimit = UpperEstimationLimit != null ? UpperEstimationLimit.Value : double.PositiveInfinity;
282        double lowerEstimationLimit = LowerEstimationLimit != null ? LowerEstimationLimit.Value : double.NegativeInfinity;
283        string targetVariable = ProblemData.TargetVariable.Value;
284
285        if (ApplyLinearScaling.Value) {
286          // calculate scaling parameters and only for the best tree using the full training set
287          double alpha, beta;
288          SymbolicRegressionScaledMeanSquaredErrorEvaluator.Calculate(SymbolicExpressionTreeInterpreter, bestTree,
289            lowerEstimationLimit, upperEstimationLimit,
290            ProblemData.Dataset, targetVariable,
291            ProblemData.TrainingIndizes, out beta, out alpha);
292
293          // scale tree for solution
294          bestTree = SymbolicRegressionSolutionLinearScaler.Scale(bestTree, alpha, beta);
295        }
296        var model = new SymbolicRegressionModel((ISymbolicExpressionTreeInterpreter)SymbolicExpressionTreeInterpreter.Clone(),
297          bestTree);
298        var solution = new SymbolicRegressionSolution((DataAnalysisProblemData)ProblemData.Clone(), model, lowerEstimationLimit, upperEstimationLimit);
299        solution.Name = BestSolutionParameterName;
300        solution.Description = "Best solution on training partition found over the whole run.";
301
302        BestSolution = solution;
303        BestSolutionQuality = new DoubleValue(bestQuality);
304
305        if (CalculateSolutionComplexity.Value) {
306          BestSolutionLength = new IntValue(solution.Model.SymbolicExpressionTree.Size);
307          BestSolutionHeight = new IntValue(solution.Model.SymbolicExpressionTree.Height);
308          BestSolutionVariables = new IntValue(solution.Model.InputVariables.Count());
309          if (!Results.ContainsKey(BestSolutionLengthParameterName)) {
310            Results.Add(new Result(BestSolutionLengthParameterName, "Length of the best solution on the training set.", BestSolutionLength));
311            Results.Add(new Result(BestSolutionHeightParameterName, "Height of the best solution on the training set.", BestSolutionHeight));
312            Results.Add(new Result(BestSolutionVariablesParameterName, "Number of variables used by the best solution on the training set.", BestSolutionVariables));
313          } else {
314            Results[BestSolutionLengthParameterName].Value = BestSolutionLength;
315            Results[BestSolutionHeightParameterName].Value = BestSolutionHeight;
316            Results[BestSolutionVariablesParameterName].Value = BestSolutionVariables;
317          }
318        }
319
320        if (CalculateSolutionAccuracy.Value) {
321          #region update R2,MSE, Rel Error
322          IEnumerable<double> trainingValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable.Value, ProblemData.TrainingIndizes);
323          IEnumerable<double> testValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable.Value, ProblemData.TestIndizes);
324          OnlineMeanSquaredErrorEvaluator mseEvaluator = new OnlineMeanSquaredErrorEvaluator();
325          OnlineMeanAbsolutePercentageErrorEvaluator relErrorEvaluator = new OnlineMeanAbsolutePercentageErrorEvaluator();
326          OnlinePearsonsRSquaredEvaluator r2Evaluator = new OnlinePearsonsRSquaredEvaluator();
327
328          #region training
329          var originalEnumerator = trainingValues.GetEnumerator();
330          var estimatedEnumerator = solution.EstimatedTrainingValues.GetEnumerator();
331          while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
332            mseEvaluator.Add(originalEnumerator.Current, estimatedEnumerator.Current);
333            r2Evaluator.Add(originalEnumerator.Current, estimatedEnumerator.Current);
334            relErrorEvaluator.Add(originalEnumerator.Current, estimatedEnumerator.Current);
335          }
336          double trainingR2 = r2Evaluator.RSquared;
337          double trainingMse = mseEvaluator.MeanSquaredError;
338          double trainingRelError = relErrorEvaluator.MeanAbsolutePercentageError;
339          #endregion
340
341          mseEvaluator.Reset();
342          relErrorEvaluator.Reset();
343          r2Evaluator.Reset();
344
345          #region test
346          originalEnumerator = testValues.GetEnumerator();
347          estimatedEnumerator = solution.EstimatedTestValues.GetEnumerator();
348          while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
349            mseEvaluator.Add(originalEnumerator.Current, estimatedEnumerator.Current);
350            r2Evaluator.Add(originalEnumerator.Current, estimatedEnumerator.Current);
351            relErrorEvaluator.Add(originalEnumerator.Current, estimatedEnumerator.Current);
352          }
353          double testR2 = r2Evaluator.RSquared;
354          double testMse = mseEvaluator.MeanSquaredError;
355          double testRelError = relErrorEvaluator.MeanAbsolutePercentageError;
356          #endregion
357          BestSolutionTrainingRSquared = new DoubleValue(trainingR2);
358          BestSolutionTestRSquared = new DoubleValue(testR2);
359          BestSolutionTrainingMse = new DoubleValue(trainingMse);
360          BestSolutionTestMse = new DoubleValue(testMse);
361          BestSolutionTrainingRelativeError = new DoubleValue(trainingRelError);
362          BestSolutionTestRelativeError = new DoubleValue(testRelError);
363
364          if (!Results.ContainsKey(BestSolutionTrainingRSquaredParameterName)) {
365            Results.Add(new Result(BestSolutionTrainingRSquaredParameterName, BestSolutionTrainingRSquared));
366            Results.Add(new Result(BestSolutionTestRSquaredParameterName, BestSolutionTestRSquared));
367            Results.Add(new Result(BestSolutionTrainingMseParameterName, BestSolutionTrainingMse));
368            Results.Add(new Result(BestSolutionTestMseParameterName, BestSolutionTestMse));
369            Results.Add(new Result(BestSolutionTrainingRelativeErrorParameterName, BestSolutionTrainingRelativeError));
370            Results.Add(new Result(BestSolutionTestRelativeErrorParameterName, BestSolutionTestRelativeError));
371          } else {
372            Results[BestSolutionTrainingRSquaredParameterName].Value = BestSolutionTrainingRSquared;
373            Results[BestSolutionTestRSquaredParameterName].Value = BestSolutionTestRSquared;
374            Results[BestSolutionTrainingMseParameterName].Value = BestSolutionTrainingMse;
375            Results[BestSolutionTestMseParameterName].Value = BestSolutionTestMse;
376            Results[BestSolutionTrainingRelativeErrorParameterName].Value = BestSolutionTrainingRelativeError;
377            Results[BestSolutionTestRelativeErrorParameterName].Value = BestSolutionTestRelativeError;
378          }
379          #endregion
380        }
381
382        if (!Results.ContainsKey(BestSolutionQualityParameterName)) {
383          Results.Add(new Result(BestSolutionQualityParameterName, BestSolutionQuality));
384          Results.Add(new Result(BestSolutionParameterName, BestSolution));
385        } else {
386          Results[BestSolutionQualityParameterName].Value = BestSolutionQuality;
387          Results[BestSolutionParameterName].Value = BestSolution;
388        }
389      }
390      #endregion
391      return base.Apply();
392    }
393  }
394}
Note: See TracBrowser for help on using the repository browser.