1 | using System;
|
---|
2 | using System.Linq;
|
---|
3 | using System.Reflection;
|
---|
4 | using System.Text;
|
---|
5 | using HeuristicLab.Common;
|
---|
6 | using HeuristicLab.Core;
|
---|
7 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
8 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
9 | using HeuristicLab.Problems.DataAnalysis;
|
---|
10 | using MLApp;
|
---|
11 | using System.Collections.Generic;
|
---|
12 |
|
---|
13 | namespace HeuristicLab.Problems.GaussianProcessTuning {
|
---|
14 | [StorableClass]
|
---|
15 | [Item("Interpreter", "An interpreter for Gaussian process configurations represented as trees.")]
|
---|
16 | public class Interpreter : Item {
|
---|
17 | [ThreadStatic]
|
---|
18 | private MLApp.MLApp ml;
|
---|
19 |
|
---|
20 | private MLApp.MLApp MLApp {
|
---|
21 | get {
|
---|
22 | if (ml == null) {
|
---|
23 | ml = new MLApp.MLApp();
|
---|
24 | }
|
---|
25 | return ml;
|
---|
26 | }
|
---|
27 | }
|
---|
28 |
|
---|
29 | [StorableConstructor]
|
---|
30 | protected Interpreter(bool deserializing) : base(deserializing) { }
|
---|
31 | protected Interpreter(Interpreter original, Cloner cloner)
|
---|
32 | : base(original, cloner) {
|
---|
33 | }
|
---|
34 | public Interpreter()
|
---|
35 | : base() { }
|
---|
36 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
37 | return new Interpreter(this, cloner);
|
---|
38 | }
|
---|
39 |
|
---|
40 | public double EvaluateGaussianProcessConfiguration(ISymbolicExpressionTree tree, IRegressionProblemData problemData) {
|
---|
41 | string meanExpression, meanHyperParameter;
|
---|
42 | string covExpression, covHyperParameter;
|
---|
43 | string likFunction, likHyperParameter;
|
---|
44 | GetMeanFunction(tree, problemData.AllowedInputVariables.Count(), out meanExpression, out meanHyperParameter);
|
---|
45 | GetCovFunction(tree, problemData.AllowedInputVariables.Count(), out covExpression, out covHyperParameter);
|
---|
46 | GetLikelihoodFunction(tree, out likFunction, out likHyperParameter);
|
---|
47 |
|
---|
48 | double[,] y = new double[problemData.TrainingIndizes.Count(), 1];
|
---|
49 | double[,] yImg = new double[problemData.TrainingIndizes.Count(), 1];
|
---|
50 |
|
---|
51 | int r, c;
|
---|
52 | r = 0;
|
---|
53 | foreach (var e in problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndizes)) {
|
---|
54 | y[r++, 0] = e;
|
---|
55 | }
|
---|
56 | double[,] x = new double[y.Length, problemData.AllowedInputVariables.Count()];
|
---|
57 | double[,] xImg = new double[y.Length, problemData.AllowedInputVariables.Count()];
|
---|
58 | c = 0;
|
---|
59 | foreach (var allowedInput in problemData.AllowedInputVariables) {
|
---|
60 | r = 0;
|
---|
61 | foreach (var e in problemData.Dataset.GetDoubleValues(allowedInput, problemData.TrainingIndizes)) {
|
---|
62 | x[r++, c] = e;
|
---|
63 | }
|
---|
64 | c++;
|
---|
65 | }
|
---|
66 |
|
---|
67 | object oldX = null;
|
---|
68 | try { oldX = MLApp.GetVariable("x", "base"); }
|
---|
69 | catch {
|
---|
70 | }
|
---|
71 | if (oldX == null || oldX is Missing || ((double[,])oldX).Length != x.Length) {
|
---|
72 | MLApp.PutFullMatrix("y", "base", y, yImg);
|
---|
73 | MLApp.PutFullMatrix("x", "base", x, xImg);
|
---|
74 | }
|
---|
75 | ExecuteMatlab("hyp0 = " + GetHyperParameterString(meanHyperParameter, covHyperParameter, likHyperParameter) + ";");
|
---|
76 | ExecuteMatlab("infFun = " + GetInferenceMethodString(tree) + ";");
|
---|
77 | ExecuteMatlab("meanExpr = " + meanExpression + ";");
|
---|
78 | ExecuteMatlab("covExpr = " + covExpression + ";");
|
---|
79 | ExecuteMatlab("likExp = " + likFunction + ";");
|
---|
80 | try
|
---|
81 | {
|
---|
82 | ExecuteMatlab("hyp = minimize(hyp0,'gp', -50, infFun, meanExpr, covExpr, likExp, x, y);");
|
---|
83 | ExecuteMatlab("[nlZ, dnlZ] = gp(hyp, infFun, meanExpr, covExpr, likExp, x, y);");
|
---|
84 | ExecuteMatlab("if isnan(nlZ) nlz = " + double.MaxValue + "; end;");
|
---|
85 | var d = MLApp.GetVariable("nlZ", "base");
|
---|
86 | if (d is Missing) return double.PositiveInfinity;
|
---|
87 | else return (double)d;
|
---|
88 | }
|
---|
89 | catch {
|
---|
90 | return double.PositiveInfinity;
|
---|
91 | }
|
---|
92 | }
|
---|
93 |
|
---|
94 | public void EvaluateGaussianProcessConfiguration(ISymbolicExpressionTree tree, IRegressionProblemData trainingData, Dataset testData, IEnumerable<int> testRows,
|
---|
95 | out double[] means, out double[] variances) {
|
---|
96 | string meanExpression, meanHyperParameter;
|
---|
97 | string covExpression, covHyperParameter;
|
---|
98 | string likFunction, likHyperParameter;
|
---|
99 | GetMeanFunction(tree, trainingData.AllowedInputVariables.Count(), out meanExpression, out meanHyperParameter);
|
---|
100 | GetCovFunction(tree, trainingData.AllowedInputVariables.Count(), out covExpression, out covHyperParameter);
|
---|
101 | GetLikelihoodFunction(tree, out likFunction, out likHyperParameter);
|
---|
102 |
|
---|
103 | double[,] y = new double[trainingData.TrainingIndizes.Count(), 1];
|
---|
104 | double[,] yImg = new double[trainingData.TrainingIndizes.Count(), 1];
|
---|
105 |
|
---|
106 | int r, c;
|
---|
107 | r = 0;
|
---|
108 | foreach (var e in trainingData.Dataset.GetDoubleValues(trainingData.TargetVariable, trainingData.TrainingIndizes)) {
|
---|
109 | y[r++, 0] = e;
|
---|
110 | }
|
---|
111 | double[,] x = new double[y.Length, trainingData.AllowedInputVariables.Count()];
|
---|
112 | double[,] xImg = new double[y.Length, trainingData.AllowedInputVariables.Count()];
|
---|
113 | c = 0;
|
---|
114 | foreach (var allowedInput in trainingData.AllowedInputVariables) {
|
---|
115 | r = 0;
|
---|
116 | foreach (var e in trainingData.Dataset.GetDoubleValues(allowedInput, trainingData.TrainingIndizes)) {
|
---|
117 | x[r++, c] = e;
|
---|
118 | }
|
---|
119 | c++;
|
---|
120 | }
|
---|
121 |
|
---|
122 | double[,] xTest = new double[testRows.Count(), trainingData.AllowedInputVariables.Count()];
|
---|
123 | double[,] xTestImg = new double[testRows.Count(), trainingData.AllowedInputVariables.Count()];
|
---|
124 | c = 0;
|
---|
125 | foreach (var allowedInput in trainingData.AllowedInputVariables) {
|
---|
126 | r = 0;
|
---|
127 | foreach (var e in testData.GetDoubleValues(allowedInput, testRows)) {
|
---|
128 | xTest[r++, c] = e;
|
---|
129 | }
|
---|
130 | c++;
|
---|
131 | }
|
---|
132 |
|
---|
133 | object oldX = null;
|
---|
134 | try {
|
---|
135 | oldX = MLApp.GetVariable("x", "base");
|
---|
136 | }
|
---|
137 | catch {
|
---|
138 | }
|
---|
139 | if (oldX == null || oldX is Missing || ((double[,])oldX).Length != x.Length) {
|
---|
140 | MLApp.PutFullMatrix("y", "base", y, yImg);
|
---|
141 | MLApp.PutFullMatrix("x", "base", x, xImg);
|
---|
142 | }
|
---|
143 | MLApp.PutFullMatrix("xTest", "base", xTest, xTestImg);
|
---|
144 | ExecuteMatlab("hyp0 = " + GetHyperParameterString(meanHyperParameter, covHyperParameter, likHyperParameter) + ";");
|
---|
145 | ExecuteMatlab("infFun = " + GetInferenceMethodString(tree) + ";");
|
---|
146 | ExecuteMatlab("meanExpr = " + meanExpression + ";");
|
---|
147 | ExecuteMatlab("covExpr = " + covExpression + ";");
|
---|
148 | ExecuteMatlab("likExp = " + likFunction + ";");
|
---|
149 | ExecuteMatlab(
|
---|
150 | "try " +
|
---|
151 | " hyp = minimize(hyp0,'gp', -50, infFun, meanExpr, covExpr, likExp, x, y);" +
|
---|
152 | " [ymu, ys2, fmu, fs2] = gp(hyp, infFun, meanExpr, covExpr, likExp, x, y, xTest); " +
|
---|
153 | "catch " +
|
---|
154 | " ymu = zeros(size(xTest, 1), 1); " +
|
---|
155 | " ys2 = ones(size(xTest, 1), 1); " +
|
---|
156 | "end");
|
---|
157 | var meansMat = (double[,])MLApp.GetVariable("ymu", "base");
|
---|
158 | var variancesMat = (double[,])MLApp.GetVariable("ys2", "base");
|
---|
159 | means = new double[meansMat.GetLength(0)];
|
---|
160 | for (int i = 0; i < means.Length; i++)
|
---|
161 | means[i] = meansMat[i, 0];
|
---|
162 | variances = new double[variancesMat.GetLength(0)];
|
---|
163 | for (int i = 0; i < variances.Length; i++)
|
---|
164 | variances[i] = variancesMat[i, 0];
|
---|
165 | }
|
---|
166 |
|
---|
167 | private string GetInferenceMethodString(ISymbolicExpressionTree tree) {
|
---|
168 | return "'infEP'";
|
---|
169 | }
|
---|
170 |
|
---|
171 | private void GetMeanFunction(ISymbolicExpressionTree tree, int dimension, out string expression, out string hyperParameter) {
|
---|
172 | var expressionBuilder = new StringBuilder();
|
---|
173 | var hyperParameterBuilder = new StringBuilder();
|
---|
174 | // var mask = CalculateMask(tree.Root.GetSubtree(0).GetSubtree(0).GetSubtree(0)) ??
|
---|
175 | var mask = new bool[dimension];
|
---|
176 |
|
---|
177 | hyperParameterBuilder.Append("[");
|
---|
178 |
|
---|
179 | GetMeanFunction(tree.Root.GetSubtree(0).GetSubtree(0).GetSubtree(0), expressionBuilder, hyperParameterBuilder, mask);
|
---|
180 |
|
---|
181 | hyperParameterBuilder.Append("]");
|
---|
182 |
|
---|
183 | expression = expressionBuilder.ToString();
|
---|
184 | hyperParameter = hyperParameterBuilder.ToString();
|
---|
185 | }
|
---|
186 |
|
---|
187 | private void GetCovFunction(ISymbolicExpressionTree tree, int dimension, out string expression, out string hyperParameter) {
|
---|
188 | var expressionBuilder = new StringBuilder();
|
---|
189 | var hyperParameterBuilder = new StringBuilder();
|
---|
190 | //expressionBuilder.Append("{");
|
---|
191 | hyperParameterBuilder.Append("[");
|
---|
192 |
|
---|
193 | var mask = new bool[dimension];
|
---|
194 | GetCovFunction(tree.Root.GetSubtree(0).GetSubtree(0).GetSubtree(1), expressionBuilder, hyperParameterBuilder, mask);
|
---|
195 |
|
---|
196 | hyperParameterBuilder.Append("]");
|
---|
197 | //expressionBuilder.Append("}");
|
---|
198 |
|
---|
199 | expression = expressionBuilder.ToString();
|
---|
200 | hyperParameter = hyperParameterBuilder.ToString();
|
---|
201 | }
|
---|
202 |
|
---|
203 |
|
---|
204 | private void GetLikelihoodFunction(ISymbolicExpressionTree tree, out string expression, out string hyperParameter) {
|
---|
205 | var expressionBuilder = new StringBuilder();
|
---|
206 | var hyperParameterBuilder = new StringBuilder();
|
---|
207 | hyperParameterBuilder.Append("[");
|
---|
208 | GetLikelihoodFunction(tree.Root.GetSubtree(0).GetSubtree(0).GetSubtree(2), expressionBuilder,
|
---|
209 | hyperParameterBuilder);
|
---|
210 | hyperParameterBuilder.Append("]");
|
---|
211 | expression = expressionBuilder.ToString();
|
---|
212 | hyperParameter = hyperParameterBuilder.ToString();
|
---|
213 | }
|
---|
214 |
|
---|
215 | private void GetLikelihoodFunction(ISymbolicExpressionTreeNode node, StringBuilder expressionBuilder, StringBuilder hyperParameterBuilder) {
|
---|
216 | if (node.Symbol is LikGauss) {
|
---|
217 | var likNode = node as LikGaussTreeNode;
|
---|
218 | expressionBuilder.Append("'likGauss'");
|
---|
219 | hyperParameterBuilder.Append(likNode.Sigma);
|
---|
220 | } else {
|
---|
221 | throw new ArgumentException("unknown likelihood function " + node.Symbol);
|
---|
222 | }
|
---|
223 | }
|
---|
224 |
|
---|
225 | private string GetHyperParameterString(string meanHyp, string covHyp, string likHyp) {
|
---|
226 | return "struct('mean', " + meanHyp +
|
---|
227 | ", 'cov', " + covHyp +
|
---|
228 | ", 'lik', " + likHyp +
|
---|
229 | ")";
|
---|
230 | ;
|
---|
231 | }
|
---|
232 |
|
---|
233 |
|
---|
234 | private void GetCovFunction(ISymbolicExpressionTreeNode node, StringBuilder expressionStringBuilder, StringBuilder hyperParameterStringBuilder, bool[] mask) {
|
---|
235 | if (node.Symbol is CovConst) {
|
---|
236 | var constNode = node as CovConstTreeNode;
|
---|
237 | expressionStringBuilder.Append("{'covConst'}");
|
---|
238 | hyperParameterStringBuilder.Append(constNode.Sigma).Append("; ");
|
---|
239 | } else if (node.Symbol is CovLin) {
|
---|
240 | expressionStringBuilder.Append("{'covLIN'}");
|
---|
241 | } else if (node.Symbol is CovLinArd) {
|
---|
242 | var covNode = node as CovLinArdTreeNode;
|
---|
243 | expressionStringBuilder.Append("{'covLINard'}");
|
---|
244 | hyperParameterStringBuilder.Append(ToVectorString(covNode.Lambda, mask));
|
---|
245 | } else if (node.Symbol is CovSeArd) {
|
---|
246 | var covNode = node as CovSeArdTreeNode;
|
---|
247 | expressionStringBuilder.Append("{'covSEard'}");
|
---|
248 | hyperParameterStringBuilder.Append("[").Append(ToVectorString(covNode.Lambda, mask));
|
---|
249 | hyperParameterStringBuilder.AppendFormat("; {0} ]", covNode.Sigma);
|
---|
250 | } else if (node.Symbol is CovSeIso) {
|
---|
251 | var covNode = node as CovSeIsoTreeNode;
|
---|
252 | expressionStringBuilder.Append("{'covSEiso'}");
|
---|
253 | hyperParameterStringBuilder.AppendFormat("[{0}", covNode.L);
|
---|
254 | hyperParameterStringBuilder.AppendFormat("; {0}]", covNode.Sigma);
|
---|
255 | } else if (node.Symbol is CovSum) {
|
---|
256 | expressionStringBuilder.Append("{'covSum', {");
|
---|
257 | hyperParameterStringBuilder.Append("[");
|
---|
258 | GetCovFunction(node.GetSubtree(0), expressionStringBuilder, hyperParameterStringBuilder, mask);
|
---|
259 | foreach (var subTree in node.Subtrees.Skip(1)) {
|
---|
260 | expressionStringBuilder.Append(", ");
|
---|
261 | hyperParameterStringBuilder.Append("; ");
|
---|
262 | GetCovFunction(subTree, expressionStringBuilder, hyperParameterStringBuilder, mask);
|
---|
263 | }
|
---|
264 | hyperParameterStringBuilder.Append("]");
|
---|
265 | expressionStringBuilder.Append("}}");
|
---|
266 | } else if (node.Symbol is CovProd) {
|
---|
267 | expressionStringBuilder.Append("{'covProd', {");
|
---|
268 | hyperParameterStringBuilder.Append("[");
|
---|
269 | GetCovFunction(node.GetSubtree(0), expressionStringBuilder, hyperParameterStringBuilder, mask);
|
---|
270 | foreach (var subTree in node.Subtrees.Skip(1)) {
|
---|
271 | expressionStringBuilder.Append(", ");
|
---|
272 | hyperParameterStringBuilder.Append("; ");
|
---|
273 | GetCovFunction(subTree, expressionStringBuilder, hyperParameterStringBuilder, mask);
|
---|
274 | }
|
---|
275 | hyperParameterStringBuilder.Append("]");
|
---|
276 | expressionStringBuilder.Append("}}");
|
---|
277 | } else if (node.Symbol is CovScale) {
|
---|
278 | var covNode = node as CovScaleTreeNode;
|
---|
279 | expressionStringBuilder.Append("{'covScale', ");
|
---|
280 | hyperParameterStringBuilder.AppendFormat("[{0}; ", covNode.Alpha);
|
---|
281 | GetCovFunction(node.GetSubtree(0), expressionStringBuilder, hyperParameterStringBuilder, mask);
|
---|
282 | hyperParameterStringBuilder.Append("]");
|
---|
283 | expressionStringBuilder.Append("}");
|
---|
284 | } else if (node.Symbol is CovMask) {
|
---|
285 | var covNode = (CovMaskTreeNode)node;
|
---|
286 | // when nothing is masked then we can just return the child
|
---|
287 | if (!covNode.Mask.Any(t => t == false)) {
|
---|
288 | GetCovFunction(node.GetSubtree(0), expressionStringBuilder, hyperParameterStringBuilder, mask);
|
---|
289 | } else {
|
---|
290 | expressionStringBuilder.Append("{'covMask', {");
|
---|
291 | hyperParameterStringBuilder.Append("[");
|
---|
292 | expressionStringBuilder.Append(ToVectorString(covNode.Mask)).Append(", ");
|
---|
293 | int startIndex = expressionStringBuilder.Length;
|
---|
294 | GetCovFunction(node.GetSubtree(0), expressionStringBuilder, hyperParameterStringBuilder, covNode.Mask);
|
---|
295 | expressionStringBuilder.Remove(startIndex, 1);
|
---|
296 | expressionStringBuilder.Remove(expressionStringBuilder.Length - 1, 1);
|
---|
297 | hyperParameterStringBuilder.Append("]");
|
---|
298 | expressionStringBuilder.Append("}}");
|
---|
299 | }
|
---|
300 | } else {
|
---|
301 | throw new ArgumentException("unknown symbol " + node.Symbol);
|
---|
302 | }
|
---|
303 | }
|
---|
304 |
|
---|
305 |
|
---|
306 | private void GetMeanFunction(ISymbolicExpressionTreeNode node, StringBuilder expressionStringBuilder, StringBuilder hyperParameterStringBuilder, bool[] mask) {
|
---|
307 | if (node.Symbol is MeanConst) {
|
---|
308 | var constNode = node as MeanConstTreeNode;
|
---|
309 | expressionStringBuilder.Append("{'meanConst'}");
|
---|
310 | hyperParameterStringBuilder.Append(constNode.Value).Append("; ");
|
---|
311 | } else if (node.Symbol is MeanLinear) {
|
---|
312 | var meanLinNode = node as MeanLinearTreeNode;
|
---|
313 | expressionStringBuilder.Append("{'meanLinear'}");
|
---|
314 | hyperParameterStringBuilder.Append(ToVectorString(meanLinNode.Alpha, mask));
|
---|
315 | } else if (node.Symbol is MeanMask) {
|
---|
316 | var meanMaskNode = (MeanMaskTreeNode)node;
|
---|
317 | // when nothing is masked then we can just return the child
|
---|
318 | if (!meanMaskNode.Mask.Any(t => t == false)) {
|
---|
319 | GetMeanFunction(node.GetSubtree(0), expressionStringBuilder, hyperParameterStringBuilder, mask);
|
---|
320 | } else {
|
---|
321 | expressionStringBuilder.Append("{'meanMask', {");
|
---|
322 | hyperParameterStringBuilder.Append("[");
|
---|
323 | expressionStringBuilder.Append(ToVectorString(meanMaskNode.Mask)).Append(", ");
|
---|
324 | int startIndex = expressionStringBuilder.Length;
|
---|
325 | GetMeanFunction(node.GetSubtree(0), expressionStringBuilder, hyperParameterStringBuilder, meanMaskNode.Mask);
|
---|
326 | expressionStringBuilder.Remove(startIndex, 1);
|
---|
327 | expressionStringBuilder.Remove(expressionStringBuilder.Length - 1, 1);
|
---|
328 | hyperParameterStringBuilder.Append("]");
|
---|
329 | expressionStringBuilder.Append("}}");
|
---|
330 | }
|
---|
331 | } else if (node.Symbol is MeanOne) {
|
---|
332 | expressionStringBuilder.Append("{'meanOne'}");
|
---|
333 | } else if (node.Symbol is MeanPow) {
|
---|
334 | var meanPowSymbol = (MeanPow)node.Symbol;
|
---|
335 | expressionStringBuilder.Append("{'meanPow', {");
|
---|
336 | hyperParameterStringBuilder.Append("[");
|
---|
337 | expressionStringBuilder.Append(meanPowSymbol.Exponent).Append(", ");
|
---|
338 | GetMeanFunction(node.GetSubtree(0), expressionStringBuilder, hyperParameterStringBuilder, mask);
|
---|
339 | hyperParameterStringBuilder.Append("]");
|
---|
340 | expressionStringBuilder.Append("}}");
|
---|
341 | } else if (node.Symbol is MeanProd) {
|
---|
342 | expressionStringBuilder.Append("{'meanProd', {");
|
---|
343 | hyperParameterStringBuilder.Append("[");
|
---|
344 | GetMeanFunction(node.GetSubtree(0), expressionStringBuilder, hyperParameterStringBuilder, mask);
|
---|
345 | foreach (var subTree in node.Subtrees.Skip(1)) {
|
---|
346 | expressionStringBuilder.Append(", ");
|
---|
347 | hyperParameterStringBuilder.Append("; ");
|
---|
348 | GetMeanFunction(subTree, expressionStringBuilder, hyperParameterStringBuilder, mask);
|
---|
349 | }
|
---|
350 | hyperParameterStringBuilder.Append("]");
|
---|
351 | expressionStringBuilder.Append("}}");
|
---|
352 | } else if (node.Symbol is MeanScale) {
|
---|
353 | var meanScaleNode = node as MeanScaleTreeNode;
|
---|
354 | expressionStringBuilder.Append("{'meanScale', ");
|
---|
355 | hyperParameterStringBuilder.AppendFormat("[{0}; ", meanScaleNode.Alpha);
|
---|
356 | GetMeanFunction(node.GetSubtree(0), expressionStringBuilder, hyperParameterStringBuilder, mask);
|
---|
357 | hyperParameterStringBuilder.Append("]");
|
---|
358 | expressionStringBuilder.Append("}");
|
---|
359 | } else if (node.Symbol is MeanSum) {
|
---|
360 | expressionStringBuilder.Append("{'meanSum', {");
|
---|
361 | hyperParameterStringBuilder.Append("[");
|
---|
362 | GetMeanFunction(node.GetSubtree(0), expressionStringBuilder, hyperParameterStringBuilder, mask);
|
---|
363 | foreach (var subTree in node.Subtrees.Skip(1)) {
|
---|
364 | expressionStringBuilder.Append(", ");
|
---|
365 | hyperParameterStringBuilder.Append("; ");
|
---|
366 | GetMeanFunction(subTree, expressionStringBuilder, hyperParameterStringBuilder, mask);
|
---|
367 | }
|
---|
368 | hyperParameterStringBuilder.Append("]");
|
---|
369 | expressionStringBuilder.Append("}}");
|
---|
370 | } else if (node.Symbol is MeanZero) {
|
---|
371 | expressionStringBuilder.Append("{'meanZero'}");
|
---|
372 | } else {
|
---|
373 | throw new ArgumentException("Unknown mean function", "node");
|
---|
374 | }
|
---|
375 | }
|
---|
376 |
|
---|
377 | //private bool[] CalculateMask(ISymbolicExpressionTreeNode node) {
|
---|
378 | // var maskNode = node as MeanMaskTreeNode;
|
---|
379 | // if (maskNode != null) {
|
---|
380 | // bool[] newMask = CombineMasksProd(maskNode.Mask, CalculateMask(node.GetSubtree(0)));
|
---|
381 | // return newMask;
|
---|
382 | // } else if (node.Symbol is MeanProd) {
|
---|
383 | // bool[] newMask = CalculateMask(node.GetSubtree(0));
|
---|
384 | // foreach (var subTree in node.Subtrees.Skip(1)) {
|
---|
385 | // newMask = CombineMasksProd(newMask, CalculateMask(subTree));
|
---|
386 | // }
|
---|
387 | // return newMask;
|
---|
388 | // } else if (node.Symbol is MeanSum) {
|
---|
389 | // bool[] newMask = CalculateMask(node.GetSubtree(0));
|
---|
390 | // foreach (var subTree in node.Subtrees.Skip(1)) {
|
---|
391 | // newMask = CombineMasksSum(newMask, CalculateMask(subTree));
|
---|
392 | // }
|
---|
393 | // return newMask;
|
---|
394 | // } else if (node.SubtreeCount == 1) {
|
---|
395 | // return CalculateMask(node.GetSubtree(0));
|
---|
396 | // } else if (node is SymbolicExpressionTreeTerminalNode) {
|
---|
397 | // return null;
|
---|
398 | // } else {
|
---|
399 | // throw new NotImplementedException();
|
---|
400 | // }
|
---|
401 | //}
|
---|
402 |
|
---|
403 | //private bool[] CombineMasksProd(bool[] m, bool[] n) {
|
---|
404 | // if (m == null) return n;
|
---|
405 | // if (n == null) return m;
|
---|
406 | // if (m.Length != n.Length) throw new ArgumentException();
|
---|
407 | // bool[] res = new bool[m.Length];
|
---|
408 | // for (int i = 0; i < res.Length; i++)
|
---|
409 | // res[i] = m[i] | n[i];
|
---|
410 | // return res;
|
---|
411 | //}
|
---|
412 |
|
---|
413 |
|
---|
414 | //private bool[] CombineMasksSum(bool[] m, bool[] n) {
|
---|
415 | // if (m == null) return n;
|
---|
416 | // if (n == null) return m;
|
---|
417 | // if (m.Length != n.Length) throw new ArgumentException();
|
---|
418 | // bool[] res = new bool[m.Length];
|
---|
419 | // for (int i = 0; i < res.Length; i++)
|
---|
420 | // res[i] = m[i] & n[i];
|
---|
421 | // return res;
|
---|
422 | //}
|
---|
423 |
|
---|
424 | private string ToVectorString(bool[] b) {
|
---|
425 | var strBuilder = new StringBuilder();
|
---|
426 | strBuilder.Append("[");
|
---|
427 | if (b.Length == 1) // workaround for bug in GPML
|
---|
428 | {
|
---|
429 | if (!b[0]) strBuilder.Append("1");
|
---|
430 | } else {
|
---|
431 | for (int i = 0; i < b.Length; i++) {
|
---|
432 | if (i > 0) strBuilder.Append(", ");
|
---|
433 | strBuilder.Append(b[i] ? "0" : "1");
|
---|
434 | }
|
---|
435 | }
|
---|
436 | strBuilder.Append("]");
|
---|
437 | return strBuilder.ToString();
|
---|
438 | }
|
---|
439 | private string ToVectorString(double[] xs, bool[] mask) {
|
---|
440 | if (xs.Length != mask.Length) throw new ArgumentException();
|
---|
441 | var strBuilder = new StringBuilder();
|
---|
442 | strBuilder.Append("[");
|
---|
443 | for (int i = 0; i < xs.Length; i++)
|
---|
444 | if (!mask[i]) {
|
---|
445 | if (i > 0) strBuilder.Append("; ");
|
---|
446 | strBuilder.Append(xs[i]);
|
---|
447 | }
|
---|
448 | strBuilder.Append("]");
|
---|
449 | return strBuilder.ToString();
|
---|
450 | }
|
---|
451 |
|
---|
452 |
|
---|
453 | private void ExecuteMatlab(string command) {
|
---|
454 | var result = MLApp.Execute(command);
|
---|
455 | if (result.Contains("???")) throw new ArgumentException(command + " " + result, "command");
|
---|
456 | }
|
---|
457 | }
|
---|
458 | }
|
---|