Free cookie consent management tool by TermsFeed Policy Generator

source: branches/GP.Symbols (TimeLag, Diff, Integral)/HeuristicLab.Problems.DataAnalysis/3.3/SupportVectorMachine/SupportVectorMachineModel.cs @ 7603

Last change on this file since 7603 was 4722, checked in by swagner, 14 years ago

Merged cloning refactoring branch back into trunk (#922)

File size: 6.4 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.IO;
25using System.Linq;
26using System.Text;
27using HeuristicLab.Common;
28using HeuristicLab.Core;
29using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
30using SVM;
31
32namespace HeuristicLab.Problems.DataAnalysis.SupportVectorMachine {
33  /// <summary>
34  /// Represents a support vector machine model.
35  /// </summary>
36  [StorableClass]
37  [Item("SupportVectorMachineModel", "Represents a support vector machine model.")]
38  public sealed class SupportVectorMachineModel : NamedItem, IDataAnalysisModel {
39    [StorableConstructor]
40    private SupportVectorMachineModel(bool deserializing) : base(deserializing) { }
41    private SupportVectorMachineModel(SupportVectorMachineModel original, Cloner cloner)
42      : base(original, cloner) {
43      // only using a shallow copy here! (gkronber)
44      this.model = original.model;
45      this.rangeTransform = original.rangeTransform;
46    }
47    public SupportVectorMachineModel() : base() { }
48
49    private SVM.Model model;
50    /// <summary>
51    /// Gets or sets the SVM model.
52    /// </summary>
53    public SVM.Model Model {
54      get { return model; }
55      set {
56        if (value != model) {
57          if (value == null) throw new ArgumentNullException();
58          model = value;
59          OnChanged(EventArgs.Empty);
60        }
61      }
62    }
63
64    /// <summary>
65    /// Gets or sets the range transformation for the model.
66    /// </summary>
67    private SVM.RangeTransform rangeTransform;
68    public SVM.RangeTransform RangeTransform {
69      get { return rangeTransform; }
70      set {
71        if (value != rangeTransform) {
72          if (value == null) throw new ArgumentNullException();
73          rangeTransform = value;
74          OnChanged(EventArgs.Empty);
75        }
76      }
77    }
78
79    public IEnumerable<double> GetEstimatedValues(DataAnalysisProblemData problemData, int start, int end) {
80      SVM.Problem problem = SupportVectorMachineUtil.CreateSvmProblem(problemData, Enumerable.Range(start, end - start));
81      SVM.Problem scaledProblem = Scaling.Scale(RangeTransform, problem);
82
83      return (from row in Enumerable.Range(0, scaledProblem.Count)
84              select SVM.Prediction.Predict(Model, scaledProblem.X[row]))
85              .ToList();
86    }
87
88    #region events
89    public event EventHandler Changed;
90    private void OnChanged(EventArgs e) {
91      var handlers = Changed;
92      if (handlers != null)
93        handlers(this, e);
94    }
95    #endregion
96
97    #region persistence
98    [Storable]
99    private int[] SupportVectorIndizes {
100      get { return this.Model.SupportVectorIndizes; }
101      set { this.Model.SupportVectorIndizes = value; }
102    }
103
104    [Storable]
105    private string ModelAsString {
106      get {
107        using (MemoryStream stream = new MemoryStream()) {
108          SVM.Model.Write(stream, Model);
109          stream.Seek(0, System.IO.SeekOrigin.Begin);
110          StreamReader reader = new StreamReader(stream);
111          return reader.ReadToEnd();
112        }
113      }
114      set {
115        using (MemoryStream stream = new MemoryStream(Encoding.ASCII.GetBytes(value))) {
116          model = SVM.Model.Read(stream);
117        }
118      }
119    }
120    [Storable]
121    private string RangeTransformAsString {
122      get {
123        using (MemoryStream stream = new MemoryStream()) {
124          SVM.RangeTransform.Write(stream, RangeTransform);
125          stream.Seek(0, System.IO.SeekOrigin.Begin);
126          StreamReader reader = new StreamReader(stream);
127          return reader.ReadToEnd();
128        }
129      }
130      set {
131        using (MemoryStream stream = new MemoryStream(Encoding.ASCII.GetBytes(value))) {
132          RangeTransform = SVM.RangeTransform.Read(stream);
133        }
134      }
135    }
136    #endregion
137
138    public override IDeepCloneable Clone(Cloner cloner) {
139      return new SupportVectorMachineModel(this, cloner);
140    }
141
142    /// <summary>
143    ///  Exports the <paramref name="model"/> in string representation to stream <paramref name="s"/>
144    /// </summary>
145    /// <param name="model">The support vector regression model to export</param>
146    /// <param name="s">The stream to export the model to</param>
147    public static void Export(SupportVectorMachineModel model, Stream s) {
148      StreamWriter writer = new StreamWriter(s);
149      writer.WriteLine("RangeTransform:");
150      writer.Flush();
151      using (MemoryStream memStream = new MemoryStream()) {
152        SVM.RangeTransform.Write(memStream, model.RangeTransform);
153        memStream.Seek(0, SeekOrigin.Begin);
154        memStream.WriteTo(s);
155      }
156      writer.WriteLine("Model:");
157      writer.Flush();
158      using (MemoryStream memStream = new MemoryStream()) {
159        SVM.Model.Write(memStream, model.Model);
160        memStream.Seek(0, SeekOrigin.Begin);
161        memStream.WriteTo(s);
162      }
163      s.Flush();
164    }
165
166    /// <summary>
167    /// Imports a support vector machine model given as string representation.
168    /// </summary>
169    /// <param name="reader">The reader to retrieve the string representation from</param>
170    /// <returns>The imported support vector machine model.</returns>
171    public static SupportVectorMachineModel Import(TextReader reader) {
172      SupportVectorMachineModel model = new SupportVectorMachineModel();
173      while (reader.ReadLine().Trim() != "RangeTransform:") ; // read until line "RangeTransform";
174      model.RangeTransform = SVM.RangeTransform.Read(reader);
175      // read until "Model:"
176      while (reader.ReadLine().Trim() != "Model:") ;
177      model.Model = SVM.Model.Read(reader);
178      return model;
179    }
180  }
181}
Note: See TracBrowser for help on using the repository browser.