1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Creators;
|
---|
29 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Symbols;
|
---|
30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Manipulators {
|
---|
33 | [StorableClass]
|
---|
34 | [Item("ReplaceBranchManipulation", "Selects a branch of the tree randomly and replaces it with a newly initialized branch (using PTC2).")]
|
---|
35 | public sealed class ReplaceBranchManipulation : SymbolicExpressionTreeManipulator {
|
---|
36 | [StorableConstructor]
|
---|
37 | private ReplaceBranchManipulation(bool deserializing) : base(deserializing) { }
|
---|
38 | private ReplaceBranchManipulation(ReplaceBranchManipulation original, Cloner cloner) : base(original, cloner) { }
|
---|
39 | public ReplaceBranchManipulation() : base() { }
|
---|
40 |
|
---|
41 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
42 | return new ReplaceBranchManipulation(this, cloner);
|
---|
43 | }
|
---|
44 |
|
---|
45 | protected override void Manipulate(IRandom random, SymbolicExpressionTree symbolicExpressionTree, ISymbolicExpressionGrammar grammar, IntValue maxTreeSize, IntValue maxTreeHeight, out bool success) {
|
---|
46 | ReplaceRandomBranch(random, symbolicExpressionTree, grammar, maxTreeSize.Value, maxTreeHeight.Value, out success);
|
---|
47 | }
|
---|
48 |
|
---|
49 | public static void ReplaceRandomBranch(IRandom random, SymbolicExpressionTree symbolicExpressionTree, ISymbolicExpressionGrammar grammar, int maxTreeSize, int maxTreeHeight, out bool success) {
|
---|
50 | success = false;
|
---|
51 | // select any node as parent (except the root node)
|
---|
52 | var manipulationPoint = (from parent in symbolicExpressionTree.Root.IterateNodesPrefix().Skip(1)
|
---|
53 | from subtree in parent.SubTrees
|
---|
54 | select new { Parent = parent, Node = subtree, Index = parent.SubTrees.IndexOf(subtree) }).SelectRandom(random);
|
---|
55 |
|
---|
56 | int maxSize = maxTreeSize - symbolicExpressionTree.Size + manipulationPoint.Node.GetSize();
|
---|
57 | int maxHeight = maxTreeHeight - symbolicExpressionTree.Height + manipulationPoint.Node.GetHeight();
|
---|
58 | // find possible symbols for the node (also considering the existing branches below it)
|
---|
59 | var allowedSymbols = from symbol in manipulationPoint.Parent.GetAllowedSymbols(manipulationPoint.Index)
|
---|
60 | where manipulationPoint.Node.Grammar.GetMinExpressionDepth(symbol) <= maxHeight
|
---|
61 | where manipulationPoint.Node.Grammar.GetMinExpressionLength(symbol) <= maxSize
|
---|
62 | select symbol;
|
---|
63 | if (allowedSymbols.Count() <= 1) return;
|
---|
64 |
|
---|
65 | var seedSymbol = SelectRandomSymbol(random, allowedSymbols); // replace the old node with the new node
|
---|
66 | var seedNode = seedSymbol.CreateTreeNode();
|
---|
67 | if (seedNode.HasLocalParameters)
|
---|
68 | seedNode.ResetLocalParameters(random);
|
---|
69 |
|
---|
70 | manipulationPoint.Parent.RemoveSubTree(manipulationPoint.Index);
|
---|
71 | manipulationPoint.Parent.InsertSubTree(manipulationPoint.Index, seedNode);
|
---|
72 | seedNode = ProbabilisticTreeCreator.PTC2(random, seedNode, maxSize, maxHeight, 0, 0);
|
---|
73 | success = true;
|
---|
74 | }
|
---|
75 |
|
---|
76 | private static Symbol SelectRandomSymbol(IRandom random, IEnumerable<Symbol> symbols) {
|
---|
77 | var symbolList = symbols.ToList();
|
---|
78 | var ticketsSum = symbolList.Select(x => x.InitialFrequency).Sum();
|
---|
79 | if (ticketsSum == 0.0) throw new ArgumentException("The initial frequency of all allowed symbols is zero.");
|
---|
80 | var r = random.NextDouble() * ticketsSum;
|
---|
81 | double aggregatedTickets = 0;
|
---|
82 | for (int i = 0; i < symbolList.Count; i++) {
|
---|
83 | aggregatedTickets += symbolList[i].InitialFrequency;
|
---|
84 | if (aggregatedTickets > r) {
|
---|
85 | return symbolList[i];
|
---|
86 | }
|
---|
87 | }
|
---|
88 | // this should never happen
|
---|
89 | throw new ArgumentException("There is a problem with the initial frequency setting of allowed symbols.");
|
---|
90 | }
|
---|
91 | }
|
---|
92 | }
|
---|