Free cookie consent management tool by TermsFeed Policy Generator

source: branches/GP.Grammar.Editor/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/ClassificationSolution.cs @ 6415

Last change on this file since 6415 was 6415, checked in by mkommend, 14 years ago

#1479: Merged trunk changes, refactored grammar editor and added copy functionality.

File size: 4.9 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using System.Linq;
24using HeuristicLab.Common;
25using HeuristicLab.Data;
26using HeuristicLab.Optimization;
27using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
28
29namespace HeuristicLab.Problems.DataAnalysis {
30  /// <summary>
31  /// Represents a classification data analysis solution
32  /// </summary>
33  [StorableClass]
34  public class ClassificationSolution : DataAnalysisSolution, IClassificationSolution {
35    private const string TrainingAccuracyResultName = "Accuracy (training)";
36    private const string TestAccuracyResultName = "Accuracy (test)";
37
38    public new IClassificationModel Model {
39      get { return (IClassificationModel)base.Model; }
40      protected set { base.Model = value; }
41    }
42
43    public new IClassificationProblemData ProblemData {
44      get { return (IClassificationProblemData)base.ProblemData; }
45      protected set { base.ProblemData = value; }
46    }
47
48    public double TrainingAccuracy {
49      get { return ((DoubleValue)this[TrainingAccuracyResultName].Value).Value; }
50      private set { ((DoubleValue)this[TrainingAccuracyResultName].Value).Value = value; }
51    }
52
53    public double TestAccuracy {
54      get { return ((DoubleValue)this[TestAccuracyResultName].Value).Value; }
55      private set { ((DoubleValue)this[TestAccuracyResultName].Value).Value = value; }
56    }
57
58    [StorableConstructor]
59    protected ClassificationSolution(bool deserializing) : base(deserializing) { }
60    protected ClassificationSolution(ClassificationSolution original, Cloner cloner)
61      : base(original, cloner) {
62    }
63    public ClassificationSolution(IClassificationModel model, IClassificationProblemData problemData)
64      : base(model, problemData) {
65      Add(new Result(TrainingAccuracyResultName, "Accuracy of the model on the training partition (percentage of correctly classified instances).", new PercentValue()));
66      Add(new Result(TestAccuracyResultName, "Accuracy of the model on the test partition (percentage of correctly classified instances).", new PercentValue()));
67      CalculateResults();
68    }
69
70    public override IDeepCloneable Clone(Cloner cloner) {
71      return new ClassificationSolution(this, cloner);
72    }
73
74    protected override void RecalculateResults() {
75      CalculateResults();
76    }
77
78    private void CalculateResults() {
79      double[] estimatedTrainingClassValues = EstimatedTrainingClassValues.ToArray(); // cache values
80      IEnumerable<double> originalTrainingClassValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes);
81      double[] estimatedTestClassValues = EstimatedTestClassValues.ToArray(); // cache values
82      IEnumerable<double> originalTestClassValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TestIndizes);
83
84      OnlineCalculatorError errorState;
85      double trainingAccuracy = OnlineAccuracyCalculator.Calculate(estimatedTrainingClassValues, originalTrainingClassValues, out errorState);
86      if (errorState != OnlineCalculatorError.None) trainingAccuracy = double.NaN;
87      double testAccuracy = OnlineAccuracyCalculator.Calculate(estimatedTestClassValues, originalTestClassValues, out errorState);
88      if (errorState != OnlineCalculatorError.None) testAccuracy = double.NaN;
89
90      TrainingAccuracy = trainingAccuracy;
91      TestAccuracy = testAccuracy;
92    }
93
94    public virtual IEnumerable<double> EstimatedClassValues {
95      get {
96        return GetEstimatedClassValues(Enumerable.Range(0, ProblemData.Dataset.Rows));
97      }
98    }
99
100    public virtual IEnumerable<double> EstimatedTrainingClassValues {
101      get {
102        return GetEstimatedClassValues(ProblemData.TrainingIndizes);
103      }
104    }
105
106    public virtual IEnumerable<double> EstimatedTestClassValues {
107      get {
108        return GetEstimatedClassValues(ProblemData.TestIndizes);
109      }
110    }
111
112    public virtual IEnumerable<double> GetEstimatedClassValues(IEnumerable<int> rows) {
113      return Model.GetEstimatedClassValues(ProblemData.Dataset, rows);
114    }
115  }
116}
Note: See TracBrowser for help on using the repository browser.